Nicole C. Inglis, Taylor R. Brown, Ashley B. Cale, Theodore Hartsook, Adriano Matos, Johanson Onyegbula, Jonathan A. Greenberg
{"title":"量化经验降尺度气候数据中空间明确的不确定性","authors":"Nicole C. Inglis, Taylor R. Brown, Ashley B. Cale, Theodore Hartsook, Adriano Matos, Johanson Onyegbula, Jonathan A. Greenberg","doi":"10.1002/joc.8596","DOIUrl":null,"url":null,"abstract":"<p>Ecological simulations including forest and vegetation growth models require climate inputs that match the resolution and extent of the process being modelled. Climate inputs are often derived at resolutions coarser than the scale of many ecosystem processes. Machine learning models can be trained to spatially downscale climate data to fine (30 m) resolution using topographic variables such as elevation, aspect and other site-specific factors. Statistically downscaled climate models will have spatially varying uncertainty that is not usually incorporated into downscaling techniques for error propagation into later models, are often applied on smaller areas, are not fine enough resolutions for many modelling techniques, or are not always scalable to large spatial extents. There remains opportunity to leverage machine learning advancements to downscale climate to very fine (30 m) resolutions with associated spatially explicit uncertainty to represent microclimatic variation in ecological models. In this study, we used quantile machine learning to produce 30 m downscaled temperature and precipitation data and associated model prediction uncertainty for the state of California. Temperature models were accurate at downscaling 4 km climate data to 30 m, performing better than the 4 km data at high and low slope positions and at high elevations, especially where there were fewer weather observations. Precipitation model predictions did not show global improvement over the 4 km scale, but were more accurate at high elevations, slopes with higher solar radiation and in valleys. For all climate variables, the added detail of spatial explicit uncertainty via 90% prediction intervals provides critical insight into the utility of empirically downscaled climate. The resulting 30 m spatially contiguous outputs can be used as ecological model inputs with uncertainty propagation, to illuminate climate trends over time as a function of fine-scale spatial factors, and to highlight areas of spatially explicit uncertainty.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 13","pages":"4548-4570"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying spatially explicit uncertainty in empirically downscaled climate data\",\"authors\":\"Nicole C. Inglis, Taylor R. Brown, Ashley B. Cale, Theodore Hartsook, Adriano Matos, Johanson Onyegbula, Jonathan A. Greenberg\",\"doi\":\"10.1002/joc.8596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecological simulations including forest and vegetation growth models require climate inputs that match the resolution and extent of the process being modelled. Climate inputs are often derived at resolutions coarser than the scale of many ecosystem processes. Machine learning models can be trained to spatially downscale climate data to fine (30 m) resolution using topographic variables such as elevation, aspect and other site-specific factors. Statistically downscaled climate models will have spatially varying uncertainty that is not usually incorporated into downscaling techniques for error propagation into later models, are often applied on smaller areas, are not fine enough resolutions for many modelling techniques, or are not always scalable to large spatial extents. There remains opportunity to leverage machine learning advancements to downscale climate to very fine (30 m) resolutions with associated spatially explicit uncertainty to represent microclimatic variation in ecological models. In this study, we used quantile machine learning to produce 30 m downscaled temperature and precipitation data and associated model prediction uncertainty for the state of California. Temperature models were accurate at downscaling 4 km climate data to 30 m, performing better than the 4 km data at high and low slope positions and at high elevations, especially where there were fewer weather observations. Precipitation model predictions did not show global improvement over the 4 km scale, but were more accurate at high elevations, slopes with higher solar radiation and in valleys. For all climate variables, the added detail of spatial explicit uncertainty via 90% prediction intervals provides critical insight into the utility of empirically downscaled climate. The resulting 30 m spatially contiguous outputs can be used as ecological model inputs with uncertainty propagation, to illuminate climate trends over time as a function of fine-scale spatial factors, and to highlight areas of spatially explicit uncertainty.</p>\",\"PeriodicalId\":13779,\"journal\":{\"name\":\"International Journal of Climatology\",\"volume\":\"44 13\",\"pages\":\"4548-4570\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/joc.8596\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8596","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Quantifying spatially explicit uncertainty in empirically downscaled climate data
Ecological simulations including forest and vegetation growth models require climate inputs that match the resolution and extent of the process being modelled. Climate inputs are often derived at resolutions coarser than the scale of many ecosystem processes. Machine learning models can be trained to spatially downscale climate data to fine (30 m) resolution using topographic variables such as elevation, aspect and other site-specific factors. Statistically downscaled climate models will have spatially varying uncertainty that is not usually incorporated into downscaling techniques for error propagation into later models, are often applied on smaller areas, are not fine enough resolutions for many modelling techniques, or are not always scalable to large spatial extents. There remains opportunity to leverage machine learning advancements to downscale climate to very fine (30 m) resolutions with associated spatially explicit uncertainty to represent microclimatic variation in ecological models. In this study, we used quantile machine learning to produce 30 m downscaled temperature and precipitation data and associated model prediction uncertainty for the state of California. Temperature models were accurate at downscaling 4 km climate data to 30 m, performing better than the 4 km data at high and low slope positions and at high elevations, especially where there were fewer weather observations. Precipitation model predictions did not show global improvement over the 4 km scale, but were more accurate at high elevations, slopes with higher solar radiation and in valleys. For all climate variables, the added detail of spatial explicit uncertainty via 90% prediction intervals provides critical insight into the utility of empirically downscaled climate. The resulting 30 m spatially contiguous outputs can be used as ecological model inputs with uncertainty propagation, to illuminate climate trends over time as a function of fine-scale spatial factors, and to highlight areas of spatially explicit uncertainty.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions