用于二氧化碳捕集的纳米纤维素掺入 PEO 基橡胶聚合物复合膜

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Somaye Nilouyal, H. Enis Karahan, Ali Pournaghshband Isfahani, Detao Qin, Masateru M. Ito, Easan Sivaniah, Behnam Ghalei
{"title":"用于二氧化碳捕集的纳米纤维素掺入 PEO 基橡胶聚合物复合膜","authors":"Somaye Nilouyal,&nbsp;H. Enis Karahan,&nbsp;Ali Pournaghshband Isfahani,&nbsp;Detao Qin,&nbsp;Masateru M. Ito,&nbsp;Easan Sivaniah,&nbsp;Behnam Ghalei","doi":"10.1155/2024/6697045","DOIUrl":null,"url":null,"abstract":"<div>\n <p>To achieve sustainable and energy-efficient CO<sub>2</sub> capture processes, it is imperative to develop membranes that possess both high CO<sub>2</sub> permeability and selectivity. One promising approach involves integrating high-aspect-ratio nanoscale fillers into polymer matrices. The high-aspect-ratio fillers increase surface area and improve interactions between polymer chains and gas molecules passing through the membrane. This study focuses on the integration of cellulose nanocrystals (CNCs) with an impressive aspect ratio of around 12 into rubbery polymers containing polyethylene oxide (PEO), namely PEBAX MH 1657 (poly[ether-block-amide] [PEBA]) and polyurethane (PU), to fabricate mixed-matrix membranes (MMMs). By exploiting the interfacial interactions between the polymer matrix and CNC nanofillers, combined with the surface functionalities of CNC nanofillers, the rapid and selective CO<sub>2</sub> transport is facilitated, even at low filler concentrations. This unique feature enables the development of thin-film composites (TFCs) with a selective layer around 1 μm. Notably, even at a filling ratio as low as 1 weight percent, the resulting membranes exhibit remarkable CO<sub>2</sub> permeability (&gt;90 Barrer) and CO<sub>2</sub>/N<sub>2</sub> selectivity (&gt;70). These findings highlight the potential of integrating CNCs into rubbery polymers as a promising strategy for the design and fabrication of highly efficient CO<sub>2</sub> capture membranes.</p>\n </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6697045","citationCount":"0","resultStr":"{\"title\":\"Nanocellulose-Incorporated Composite Membranes of PEO-Based Rubbery Polymers for Carbon Dioxide Capture\",\"authors\":\"Somaye Nilouyal,&nbsp;H. Enis Karahan,&nbsp;Ali Pournaghshband Isfahani,&nbsp;Detao Qin,&nbsp;Masateru M. Ito,&nbsp;Easan Sivaniah,&nbsp;Behnam Ghalei\",\"doi\":\"10.1155/2024/6697045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>To achieve sustainable and energy-efficient CO<sub>2</sub> capture processes, it is imperative to develop membranes that possess both high CO<sub>2</sub> permeability and selectivity. One promising approach involves integrating high-aspect-ratio nanoscale fillers into polymer matrices. The high-aspect-ratio fillers increase surface area and improve interactions between polymer chains and gas molecules passing through the membrane. This study focuses on the integration of cellulose nanocrystals (CNCs) with an impressive aspect ratio of around 12 into rubbery polymers containing polyethylene oxide (PEO), namely PEBAX MH 1657 (poly[ether-block-amide] [PEBA]) and polyurethane (PU), to fabricate mixed-matrix membranes (MMMs). By exploiting the interfacial interactions between the polymer matrix and CNC nanofillers, combined with the surface functionalities of CNC nanofillers, the rapid and selective CO<sub>2</sub> transport is facilitated, even at low filler concentrations. This unique feature enables the development of thin-film composites (TFCs) with a selective layer around 1 μm. Notably, even at a filling ratio as low as 1 weight percent, the resulting membranes exhibit remarkable CO<sub>2</sub> permeability (&gt;90 Barrer) and CO<sub>2</sub>/N<sub>2</sub> selectivity (&gt;70). These findings highlight the potential of integrating CNCs into rubbery polymers as a promising strategy for the design and fabrication of highly efficient CO<sub>2</sub> capture membranes.</p>\\n </div>\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6697045\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6697045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6697045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了实现可持续和高能效的二氧化碳捕获工艺,必须开发出同时具有高二氧化碳渗透性和选择性的膜。一种很有前景的方法是在聚合物基质中加入高宽比纳米级填料。高宽比填料可增加表面积,改善聚合物链与通过膜的气体分子之间的相互作用。本研究的重点是将纵横比高达 12 左右的纤维素纳米晶体(CNC)与含有聚环氧乙烷(PEO)的橡胶聚合物(即 PEBAX MH 1657(聚[醚-块-酰胺] [PEBA])和聚氨酯(PU))进行整合,以制造混合基质膜(MMM)。通过利用聚合物基体与 CNC 纳米填料之间的界面相互作用以及 CNC 纳米填料的表面功能,即使填料浓度较低,也能促进二氧化碳的快速和选择性传输。这种独特的特性使薄膜复合材料(TFC)的选择性层厚度达到了 1 μm。值得注意的是,即使填充率低至 1 重量百分比,所产生的膜也能表现出显著的二氧化碳渗透性(>90 Barrer)和二氧化碳/氮气选择性(>70)。这些发现凸显了将 CNC 集成到橡胶聚合物中的潜力,是设计和制造高效二氧化碳捕集膜的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanocellulose-Incorporated Composite Membranes of PEO-Based Rubbery Polymers for Carbon Dioxide Capture

Nanocellulose-Incorporated Composite Membranes of PEO-Based Rubbery Polymers for Carbon Dioxide Capture

To achieve sustainable and energy-efficient CO2 capture processes, it is imperative to develop membranes that possess both high CO2 permeability and selectivity. One promising approach involves integrating high-aspect-ratio nanoscale fillers into polymer matrices. The high-aspect-ratio fillers increase surface area and improve interactions between polymer chains and gas molecules passing through the membrane. This study focuses on the integration of cellulose nanocrystals (CNCs) with an impressive aspect ratio of around 12 into rubbery polymers containing polyethylene oxide (PEO), namely PEBAX MH 1657 (poly[ether-block-amide] [PEBA]) and polyurethane (PU), to fabricate mixed-matrix membranes (MMMs). By exploiting the interfacial interactions between the polymer matrix and CNC nanofillers, combined with the surface functionalities of CNC nanofillers, the rapid and selective CO2 transport is facilitated, even at low filler concentrations. This unique feature enables the development of thin-film composites (TFCs) with a selective layer around 1 μm. Notably, even at a filling ratio as low as 1 weight percent, the resulting membranes exhibit remarkable CO2 permeability (>90 Barrer) and CO2/N2 selectivity (>70). These findings highlight the potential of integrating CNCs into rubbery polymers as a promising strategy for the design and fabrication of highly efficient CO2 capture membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信