开发考虑到各种时间流的修正时态安全性能函数

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL
Yeji Sung, Seunghwan Kim, Juneyoung Park, Ling Wang
{"title":"开发考虑到各种时间流的修正时态安全性能函数","authors":"Yeji Sung,&nbsp;Seunghwan Kim,&nbsp;Juneyoung Park,&nbsp;Ling Wang","doi":"10.1155/2024/7970454","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Safety performance functions (SPFs) have become valuable tools for estimating the relationships between crashes and various causal factors when constructing crash-prediction models. However, the commonly used independent variable, the annual average daily traffic (AADT) is data on a yearly basis, which has limitations in capturing the temporal characteristics of traffic flows influenced by the passage of time. Accordingly, there have also been many studies using 15 min data to reflect real-time, which is an important time unit to understand changes in highway traffic flow. However, such a short time unit has the limitation of high instability and randomness. In light of this, this study recognizes the importance of the 15 min time interval and proposes a new approach by developing a modified hourly model that aggregates data at fine-grained 15 min intervals (00, 15, 30, and 45 min, both at the beginning and end), instead of the traditional hourly data that starts and ends at the peak of each hour to compensate for the existing limitations. The analysis focused on South Korea’s nationwide highways, and models were developed based on both statistical and machine-learning approaches to compare their performances for selecting the final model. Additionally, a modified temporal SPF is introduced to predict crashes by assigning weights based on a Dirichlet distribution to models with overlapping time intervals aggregated in 15 min increments. This innovative approach overcomes the limitations of existing 15 min models, where the number of crashes is too small for effective training if the model is simply developed by dividing the time. The anticipated outcome is that the proposed model will demonstrate excellent performance and serve as an effective tool for predicting highway crash risks.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7970454","citationCount":"0","resultStr":"{\"title\":\"Development of Modified Temporal Safety Performance Function Considering Various Time Flows\",\"authors\":\"Yeji Sung,&nbsp;Seunghwan Kim,&nbsp;Juneyoung Park,&nbsp;Ling Wang\",\"doi\":\"10.1155/2024/7970454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Safety performance functions (SPFs) have become valuable tools for estimating the relationships between crashes and various causal factors when constructing crash-prediction models. However, the commonly used independent variable, the annual average daily traffic (AADT) is data on a yearly basis, which has limitations in capturing the temporal characteristics of traffic flows influenced by the passage of time. Accordingly, there have also been many studies using 15 min data to reflect real-time, which is an important time unit to understand changes in highway traffic flow. However, such a short time unit has the limitation of high instability and randomness. In light of this, this study recognizes the importance of the 15 min time interval and proposes a new approach by developing a modified hourly model that aggregates data at fine-grained 15 min intervals (00, 15, 30, and 45 min, both at the beginning and end), instead of the traditional hourly data that starts and ends at the peak of each hour to compensate for the existing limitations. The analysis focused on South Korea’s nationwide highways, and models were developed based on both statistical and machine-learning approaches to compare their performances for selecting the final model. Additionally, a modified temporal SPF is introduced to predict crashes by assigning weights based on a Dirichlet distribution to models with overlapping time intervals aggregated in 15 min increments. This innovative approach overcomes the limitations of existing 15 min models, where the number of crashes is too small for effective training if the model is simply developed by dividing the time. The anticipated outcome is that the proposed model will demonstrate excellent performance and serve as an effective tool for predicting highway crash risks.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7970454\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7970454\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7970454","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在构建碰撞预测模型时,安全性能函数(SPF)已成为估算碰撞事故与各种因果关系的重要工具。然而,常用的自变量--年平均日交通量(AADT)是按年计算的数据,在捕捉受时间影响的交通流的时间特征方面存在局限性。因此,也有许多研究使用 15 分钟的数据来反映实时情况,这是了解公路交通流量变化的一个重要时间单位。然而,如此短的时间单位具有不稳定性和随机性强的局限性。有鉴于此,本研究认识到 15 分钟时间间隔的重要性,并提出了一种新的方法,即开发一种改进的小时模型,以细粒度的 15 分钟时间间隔(00、15、30 和 45 分钟,包括开始和结束时间)来汇总数据,而不是以每小时的高峰开始和结束的传统小时数据,以弥补现有的局限性。分析的重点是韩国全国的高速公路,并基于统计和机器学习方法开发了模型,比较其性能以选择最终模型。此外,还引入了修改后的时间 SPF,通过为以 15 分钟为增量的重叠时间间隔模型分配基于 Dirichlet 分布的权重来预测碰撞事故。这种创新方法克服了现有 15 分钟模型的局限性,即如果简单地通过划分时间来建立模型,碰撞事故的数量太少,无法进行有效的训练。预期结果是,拟议的模型将表现出卓越的性能,并成为预测高速公路碰撞风险的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of Modified Temporal Safety Performance Function Considering Various Time Flows

Development of Modified Temporal Safety Performance Function Considering Various Time Flows

Safety performance functions (SPFs) have become valuable tools for estimating the relationships between crashes and various causal factors when constructing crash-prediction models. However, the commonly used independent variable, the annual average daily traffic (AADT) is data on a yearly basis, which has limitations in capturing the temporal characteristics of traffic flows influenced by the passage of time. Accordingly, there have also been many studies using 15 min data to reflect real-time, which is an important time unit to understand changes in highway traffic flow. However, such a short time unit has the limitation of high instability and randomness. In light of this, this study recognizes the importance of the 15 min time interval and proposes a new approach by developing a modified hourly model that aggregates data at fine-grained 15 min intervals (00, 15, 30, and 45 min, both at the beginning and end), instead of the traditional hourly data that starts and ends at the peak of each hour to compensate for the existing limitations. The analysis focused on South Korea’s nationwide highways, and models were developed based on both statistical and machine-learning approaches to compare their performances for selecting the final model. Additionally, a modified temporal SPF is introduced to predict crashes by assigning weights based on a Dirichlet distribution to models with overlapping time intervals aggregated in 15 min increments. This innovative approach overcomes the limitations of existing 15 min models, where the number of crashes is too small for effective training if the model is simply developed by dividing the time. The anticipated outcome is that the proposed model will demonstrate excellent performance and serve as an effective tool for predicting highway crash risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信