Shyam Venkatasubramanian, Sandeep Gogineni, Bosung Kang, Ali Pezeshki, Muralidhar Rangaswamy, Vahid Tarokh
{"title":"利用自适应雷达处理和卷积神经网络进行数据驱动的目标定位","authors":"Shyam Venkatasubramanian, Sandeep Gogineni, Bosung Kang, Ali Pezeshki, Muralidhar Rangaswamy, Vahid Tarokh","doi":"10.1049/rsn2.12600","DOIUrl":null,"url":null,"abstract":"<p>Leveraging the advanced functionalities of modern radio frequency (RF) modeling and simulation tools, specifically designed for adaptive radar processing applications, this paper presents a data-driven approach to improve accuracy in radar target localization post adaptive radar detection. To this end, we generate a large number of radar returns by randomly placing targets of variable strengths in a predefined area, using RFView<sup>®</sup>, a high-fidelity, site-specific, RF modeling & simulation tool. We produce heatmap tensors from the radar returns, in range, azimuth [and Doppler], of the normalized adaptive matched filter (NAMF) test statistic. We then train a regression convolutional neural network (CNN) to estimate target locations from these heatmap tensors, and we compare the target localization accuracy of this approach with that of peak-finding and local search methods. This empirical study shows that our regression CNN achieves a considerable improvement in target location estimation accuracy. The regression CNN offers significant gains and reasonable accuracy even at signal-to-clutter-plus-noise ratio (SCNR) regimes that are close to the breakdown threshold SCNR of the NAMF. We also study the robustness of our trained CNN to mismatches in the radar data, where the CNN is tested on heatmap tensors collected from areas that it was not trained on. We show that our CNN can be made robust to mismatches in the radar data through few-shot learning, using a relatively small number of new training samples.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 10","pages":"1638-1651"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12600","citationCount":"0","resultStr":"{\"title\":\"Data-driven target localization using adaptive radar processing and convolutional neural networks\",\"authors\":\"Shyam Venkatasubramanian, Sandeep Gogineni, Bosung Kang, Ali Pezeshki, Muralidhar Rangaswamy, Vahid Tarokh\",\"doi\":\"10.1049/rsn2.12600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Leveraging the advanced functionalities of modern radio frequency (RF) modeling and simulation tools, specifically designed for adaptive radar processing applications, this paper presents a data-driven approach to improve accuracy in radar target localization post adaptive radar detection. To this end, we generate a large number of radar returns by randomly placing targets of variable strengths in a predefined area, using RFView<sup>®</sup>, a high-fidelity, site-specific, RF modeling & simulation tool. We produce heatmap tensors from the radar returns, in range, azimuth [and Doppler], of the normalized adaptive matched filter (NAMF) test statistic. We then train a regression convolutional neural network (CNN) to estimate target locations from these heatmap tensors, and we compare the target localization accuracy of this approach with that of peak-finding and local search methods. This empirical study shows that our regression CNN achieves a considerable improvement in target location estimation accuracy. The regression CNN offers significant gains and reasonable accuracy even at signal-to-clutter-plus-noise ratio (SCNR) regimes that are close to the breakdown threshold SCNR of the NAMF. We also study the robustness of our trained CNN to mismatches in the radar data, where the CNN is tested on heatmap tensors collected from areas that it was not trained on. We show that our CNN can be made robust to mismatches in the radar data through few-shot learning, using a relatively small number of new training samples.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 10\",\"pages\":\"1638-1651\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12600\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12600\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12600","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Data-driven target localization using adaptive radar processing and convolutional neural networks
Leveraging the advanced functionalities of modern radio frequency (RF) modeling and simulation tools, specifically designed for adaptive radar processing applications, this paper presents a data-driven approach to improve accuracy in radar target localization post adaptive radar detection. To this end, we generate a large number of radar returns by randomly placing targets of variable strengths in a predefined area, using RFView®, a high-fidelity, site-specific, RF modeling & simulation tool. We produce heatmap tensors from the radar returns, in range, azimuth [and Doppler], of the normalized adaptive matched filter (NAMF) test statistic. We then train a regression convolutional neural network (CNN) to estimate target locations from these heatmap tensors, and we compare the target localization accuracy of this approach with that of peak-finding and local search methods. This empirical study shows that our regression CNN achieves a considerable improvement in target location estimation accuracy. The regression CNN offers significant gains and reasonable accuracy even at signal-to-clutter-plus-noise ratio (SCNR) regimes that are close to the breakdown threshold SCNR of the NAMF. We also study the robustness of our trained CNN to mismatches in the radar data, where the CNN is tested on heatmap tensors collected from areas that it was not trained on. We show that our CNN can be made robust to mismatches in the radar data through few-shot learning, using a relatively small number of new training samples.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.