{"title":"具有一个连续障碍和准线性增长发生器的反射 BSDE 的 Lp 解法","authors":"Sheng-jun Fan","doi":"10.1007/s10255-024-1133-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to solving a reflected backward stochastic differential equation (BSDE in short) with one continuous barrier and a quasi-linear growth generator <i>g</i>, which has a linear growth in (<i>y</i>, <i>z</i>), except the upper direction in case of <i>y</i> < 0, and is more general than the usual linear growth generator. By showing the convergence of a penalization scheme we prove existence and comparison theorem of the minimal <i>L</i><sup><i>p</i></sup> (<i>p</i> > 1) solutions for the reflected BSDEs. We also prove that the minimal <i>L</i><sup><i>p</i></sup> solution can be approximated by a sequence of <i>L</i><sup><i>p</i></sup> solutions of certain reflected BSDEs with Lipschitz generators.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp Solution of Reflected BSDEs with One Continuous Barrier and Quasi-linear Growth Generators\",\"authors\":\"Sheng-jun Fan\",\"doi\":\"10.1007/s10255-024-1133-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to solving a reflected backward stochastic differential equation (BSDE in short) with one continuous barrier and a quasi-linear growth generator <i>g</i>, which has a linear growth in (<i>y</i>, <i>z</i>), except the upper direction in case of <i>y</i> < 0, and is more general than the usual linear growth generator. By showing the convergence of a penalization scheme we prove existence and comparison theorem of the minimal <i>L</i><sup><i>p</i></sup> (<i>p</i> > 1) solutions for the reflected BSDEs. We also prove that the minimal <i>L</i><sup><i>p</i></sup> solution can be approximated by a sequence of <i>L</i><sup><i>p</i></sup> solutions of certain reflected BSDEs with Lipschitz generators.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1133-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1133-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文致力于求解具有一个连续势垒和一个准线性增长发生器 g 的反射后向随机微分方程(简称 BSDE),该发生器 g 在(y,z)中具有线性增长,但在 y < 0 的情况下,其上部方向除外,它比通常的线性增长发生器更通用。通过证明惩罚方案的收敛性,我们证明了反射 BSDE 的最小 Lp (p > 1) 解的存在性和比较定理。我们还证明了最小 Lp 解可以通过某些反射 BSDE 的 Lp 解序列近似得到,该序列具有 Lipschitz 发生器。
Lp Solution of Reflected BSDEs with One Continuous Barrier and Quasi-linear Growth Generators
This paper is devoted to solving a reflected backward stochastic differential equation (BSDE in short) with one continuous barrier and a quasi-linear growth generator g, which has a linear growth in (y, z), except the upper direction in case of y < 0, and is more general than the usual linear growth generator. By showing the convergence of a penalization scheme we prove existence and comparison theorem of the minimal Lp (p > 1) solutions for the reflected BSDEs. We also prove that the minimal Lp solution can be approximated by a sequence of Lp solutions of certain reflected BSDEs with Lipschitz generators.