{"title":"论傅立叶空间中具有流体效应的趋化系统的初始层和极限行为","authors":"Jian-xiang Wan, Hai-ping Zhong","doi":"10.1007/s10255-024-1134-3","DOIUrl":null,"url":null,"abstract":"<div><p>The paper deals with a Cauchy problem for the chemotaxis system with the effect of fluid </p><div><div><span>$$\\left\\{ {\\matrix{ {u_t^\\varepsilon + {u^\\varepsilon } \\cdot \\nabla {u^\\varepsilon } - \\Delta {u^\\varepsilon } + \\nabla {{\\rm{P}}^\\varepsilon } = {n^\\varepsilon }\\nabla {c^\\varepsilon },} \\hfill & {{\\rm{in}}} \\hfill & {{\\mathbb{R}^d} \\times \\left( {0,\\infty } \\right),} \\hfill \\cr {\\nabla \\cdot {u^\\varepsilon } = 0,} \\hfill & {{\\rm{in}}} \\hfill & {{\\mathbb{R}^d} \\times \\left( {0,\\infty } \\right),} \\hfill \\cr {n_t^\\varepsilon + {u^\\varepsilon } \\cdot \\nabla {n^\\varepsilon } - \\Delta {n^\\varepsilon } = - \\nabla \\cdot \\left( {{n^\\varepsilon }\\nabla {c^\\varepsilon }} \\right),} \\hfill & {{\\rm{in}}} \\hfill & {{\\mathbb{R}^d} \\times \\left( {0,\\infty } \\right),} \\hfill \\cr {{1 \\over \\varepsilon }c_t^\\varepsilon - \\Delta {c^\\varepsilon } = {n^\\varepsilon },} \\hfill & {{\\rm{in}}} \\hfill & {{\\mathbb{R}^d} \\times \\left( {0,\\infty } \\right),} \\hfill \\cr {\\left( {{u^\\varepsilon },{n^\\varepsilon },{c^\\varepsilon }} \\right){|_{t = 0}} = \\left( {{u_0},{n_0},{c_0}} \\right),} \\hfill & {{\\rm{in}}} \\hfill & {{\\mathbb{R}^d},} \\hfill \\cr } } \\right.$$</span></div></div><p> where <i>d</i> ≥ 2. It is known that for each <i>ϵ</i> > 0 and all sufficiently small initial data (<i>u</i><sub>0</sub>, <i>n</i><sub>0</sub>, <i>c</i><sub>0</sub>) belongs to certain Fourier space, the problem possesses a unique global solution (<i>u</i><sup><i>ϵ</i></sup>, <i>n</i><sup><i>ϵ</i></sup>, <i>c</i><sup><i>ϵ</i></sup>) in Fourier space. The present work asserts that these solutions stabilize to (<i>u</i><sup>∞</sup>, <i>n</i><sup>∞</sup>, <i>c</i><sup>∞</sup>) as <i>ϵ</i><sup>−1</sup> → 0. Moreover, we show that <i>c</i><sup><i>ϵ</i></sup>(<i>t</i>) has the initial layer as <i>ϵ</i><sup>−1</sup> → 0. As one expects its limit behavior maybe give a new viewlook to understand the system.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 4","pages":"1015 - 1024"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10255-024-1134-3.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Initial Layer and the Limit Behavior for Chemotaxis System with the Effect of Fluid in Fourier Space\",\"authors\":\"Jian-xiang Wan, Hai-ping Zhong\",\"doi\":\"10.1007/s10255-024-1134-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper deals with a Cauchy problem for the chemotaxis system with the effect of fluid </p><div><div><span>$$\\\\left\\\\{ {\\\\matrix{ {u_t^\\\\varepsilon + {u^\\\\varepsilon } \\\\cdot \\\\nabla {u^\\\\varepsilon } - \\\\Delta {u^\\\\varepsilon } + \\\\nabla {{\\\\rm{P}}^\\\\varepsilon } = {n^\\\\varepsilon }\\\\nabla {c^\\\\varepsilon },} \\\\hfill & {{\\\\rm{in}}} \\\\hfill & {{\\\\mathbb{R}^d} \\\\times \\\\left( {0,\\\\infty } \\\\right),} \\\\hfill \\\\cr {\\\\nabla \\\\cdot {u^\\\\varepsilon } = 0,} \\\\hfill & {{\\\\rm{in}}} \\\\hfill & {{\\\\mathbb{R}^d} \\\\times \\\\left( {0,\\\\infty } \\\\right),} \\\\hfill \\\\cr {n_t^\\\\varepsilon + {u^\\\\varepsilon } \\\\cdot \\\\nabla {n^\\\\varepsilon } - \\\\Delta {n^\\\\varepsilon } = - \\\\nabla \\\\cdot \\\\left( {{n^\\\\varepsilon }\\\\nabla {c^\\\\varepsilon }} \\\\right),} \\\\hfill & {{\\\\rm{in}}} \\\\hfill & {{\\\\mathbb{R}^d} \\\\times \\\\left( {0,\\\\infty } \\\\right),} \\\\hfill \\\\cr {{1 \\\\over \\\\varepsilon }c_t^\\\\varepsilon - \\\\Delta {c^\\\\varepsilon } = {n^\\\\varepsilon },} \\\\hfill & {{\\\\rm{in}}} \\\\hfill & {{\\\\mathbb{R}^d} \\\\times \\\\left( {0,\\\\infty } \\\\right),} \\\\hfill \\\\cr {\\\\left( {{u^\\\\varepsilon },{n^\\\\varepsilon },{c^\\\\varepsilon }} \\\\right){|_{t = 0}} = \\\\left( {{u_0},{n_0},{c_0}} \\\\right),} \\\\hfill & {{\\\\rm{in}}} \\\\hfill & {{\\\\mathbb{R}^d},} \\\\hfill \\\\cr } } \\\\right.$$</span></div></div><p> where <i>d</i> ≥ 2. It is known that for each <i>ϵ</i> > 0 and all sufficiently small initial data (<i>u</i><sub>0</sub>, <i>n</i><sub>0</sub>, <i>c</i><sub>0</sub>) belongs to certain Fourier space, the problem possesses a unique global solution (<i>u</i><sup><i>ϵ</i></sup>, <i>n</i><sup><i>ϵ</i></sup>, <i>c</i><sup><i>ϵ</i></sup>) in Fourier space. The present work asserts that these solutions stabilize to (<i>u</i><sup>∞</sup>, <i>n</i><sup>∞</sup>, <i>c</i><sup>∞</sup>) as <i>ϵ</i><sup>−1</sup> → 0. Moreover, we show that <i>c</i><sup><i>ϵ</i></sup>(<i>t</i>) has the initial layer as <i>ϵ</i><sup>−1</sup> → 0. As one expects its limit behavior maybe give a new viewlook to understand the system.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 4\",\"pages\":\"1015 - 1024\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10255-024-1134-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1134-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1134-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
where d ≥ 2. It is known that for each ϵ > 0 and all sufficiently small initial data (u0, n0, c0) belongs to certain Fourier space, the problem possesses a unique global solution (uϵ, nϵ, cϵ) in Fourier space. The present work asserts that these solutions stabilize to (u∞, n∞, c∞) as ϵ−1 → 0. Moreover, we show that cϵ(t) has the initial layer as ϵ−1 → 0. As one expects its limit behavior maybe give a new viewlook to understand the system.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.