一些完整二方图和三方图的厚度

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Si-wei Hu, Yi-chao Chen
{"title":"一些完整二方图和三方图的厚度","authors":"Si-wei Hu,&nbsp;Yi-chao Chen","doi":"10.1007/s10255-024-1128-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we obtain the thickness for some complete <i>k</i>–partite graphs for <i>k</i> = 2, 3. We first compute the thickness of <i>K</i><sub><i>n,n</i>+8</sub> by giving a planar decomposition of <i>K</i><sub>4<i>k</i>−1,4<i>k</i>+7</sub> for <i>k</i> ≥ 3. Then, two planar decompositions for <i>K</i><sub>1,<i>g,g</i>(<i>g</i>−1)</sub> when <i>g</i> is even and for <span>\\(K_{1,g,{1\\over{2}}(g-1)^{2}}\\)</span> when <i>g</i> is odd are obtained. Using a recursive construction, we also obtain the thickness for some complete tripartite graphs. The results here support the long-standing conjecture that the thickness of <i>K</i><sub><i>m,n</i></sub> is <span>\\(\\lceil {mn\\over{2(m+n-2)}}\\rceil\\)</span> for any positive integers <i>m, n</i>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 4","pages":"1001 - 1014"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Thickness of Some Complete Bipartite and Tripartite Graphs\",\"authors\":\"Si-wei Hu,&nbsp;Yi-chao Chen\",\"doi\":\"10.1007/s10255-024-1128-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we obtain the thickness for some complete <i>k</i>–partite graphs for <i>k</i> = 2, 3. We first compute the thickness of <i>K</i><sub><i>n,n</i>+8</sub> by giving a planar decomposition of <i>K</i><sub>4<i>k</i>−1,4<i>k</i>+7</sub> for <i>k</i> ≥ 3. Then, two planar decompositions for <i>K</i><sub>1,<i>g,g</i>(<i>g</i>−1)</sub> when <i>g</i> is even and for <span>\\\\(K_{1,g,{1\\\\over{2}}(g-1)^{2}}\\\\)</span> when <i>g</i> is odd are obtained. Using a recursive construction, we also obtain the thickness for some complete tripartite graphs. The results here support the long-standing conjecture that the thickness of <i>K</i><sub><i>m,n</i></sub> is <span>\\\\(\\\\lceil {mn\\\\over{2(m+n-2)}}\\\\rceil\\\\)</span> for any positive integers <i>m, n</i>.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 4\",\"pages\":\"1001 - 1014\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1128-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1128-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们得到了 k = 2, 3 时一些完整 k 部分图的厚度。我们首先通过给出 k≥3 时 K4k-1,4k+7 的平面分解来计算 Kn,n+8 的厚度。然后,当 g 为偶数时,得到 K1,g,g(g-1)的两个平面分解;当 g 为奇数时,得到 \(K_{1,g,{1/over{2}}(g-1)^{2}}\) 的两个平面分解。通过递归构造,我们还得到了一些完整三方图的厚度。这里的结果支持了一个存在已久的猜想,即对于任意正整数 m、n,Km,n 的厚度都是\(\lceil {mn\over{2(m+n-2)}}\rceil\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Thickness of Some Complete Bipartite and Tripartite Graphs

In this paper, we obtain the thickness for some complete k–partite graphs for k = 2, 3. We first compute the thickness of Kn,n+8 by giving a planar decomposition of K4k−1,4k+7 for k ≥ 3. Then, two planar decompositions for K1,g,g(g−1) when g is even and for \(K_{1,g,{1\over{2}}(g-1)^{2}}\) when g is odd are obtained. Using a recursive construction, we also obtain the thickness for some complete tripartite graphs. The results here support the long-standing conjecture that the thickness of Km,n is \(\lceil {mn\over{2(m+n-2)}}\rceil\) for any positive integers m, n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信