{"title":"不可压缩非牛顿流体的流体-粒子系统和弗拉索夫方程的全局弱解法","authors":"Pei-yu Zhang, Li Fang, Zhen-hua Guo","doi":"10.1007/s10255-024-1080-0","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this work is to investigate the existence and uniqueness of weak solutions to the initial-boundary value problem for a coupled system of an incompressible non-Newtonian fluid and the Vlasov equation. The coupling arises from the acceleration in the Vlasov equation and the drag force in the incompressible viscous non-Newtonian fluid with the stress tensor of a power-law structure for <span>\\(p\\geqslant {11\\over 5}\\)</span>. The main idea of the existence analysis is to reformulate the coupled system by means of a so-called truncation function. The advantage of the new formulation is to control the external force term <span>\\(G=-\\int_\\mathbb{{R}^{d}}(\\mathbf{u}-\\mathbf{v})fd\\mathbf{v}\\ (d=2,3)\\)</span>. The global existence of weak solutions to the reformulated system is shown by using the Faedo-Galerkin method and weak compactness techniques. We further prove the uniqueness of weak solutions to the considered system.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Weak Solutions to a Fluid-particle System of an Incompressible Non-Newtonian Fluid and the Vlasov Equation\",\"authors\":\"Pei-yu Zhang, Li Fang, Zhen-hua Guo\",\"doi\":\"10.1007/s10255-024-1080-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this work is to investigate the existence and uniqueness of weak solutions to the initial-boundary value problem for a coupled system of an incompressible non-Newtonian fluid and the Vlasov equation. The coupling arises from the acceleration in the Vlasov equation and the drag force in the incompressible viscous non-Newtonian fluid with the stress tensor of a power-law structure for <span>\\\\(p\\\\geqslant {11\\\\over 5}\\\\)</span>. The main idea of the existence analysis is to reformulate the coupled system by means of a so-called truncation function. The advantage of the new formulation is to control the external force term <span>\\\\(G=-\\\\int_\\\\mathbb{{R}^{d}}(\\\\mathbf{u}-\\\\mathbf{v})fd\\\\mathbf{v}\\\\ (d=2,3)\\\\)</span>. The global existence of weak solutions to the reformulated system is shown by using the Faedo-Galerkin method and weak compactness techniques. We further prove the uniqueness of weak solutions to the considered system.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1080-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1080-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Weak Solutions to a Fluid-particle System of an Incompressible Non-Newtonian Fluid and the Vlasov Equation
The purpose of this work is to investigate the existence and uniqueness of weak solutions to the initial-boundary value problem for a coupled system of an incompressible non-Newtonian fluid and the Vlasov equation. The coupling arises from the acceleration in the Vlasov equation and the drag force in the incompressible viscous non-Newtonian fluid with the stress tensor of a power-law structure for \(p\geqslant {11\over 5}\). The main idea of the existence analysis is to reformulate the coupled system by means of a so-called truncation function. The advantage of the new formulation is to control the external force term \(G=-\int_\mathbb{{R}^{d}}(\mathbf{u}-\mathbf{v})fd\mathbf{v}\ (d=2,3)\). The global existence of weak solutions to the reformulated system is shown by using the Faedo-Galerkin method and weak compactness techniques. We further prove the uniqueness of weak solutions to the considered system.