{"title":"具有随机非 Lipschitz 系数的后向双随机微分方程","authors":"Si-yan Xu, Yi-dong Zhang","doi":"10.1007/s10255-024-1137-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and time-dependent condition. As an application, we use the result to obtain the existence of stochastic viscosity solution for some nonlinear stochastic partial differential equations under stochastic non-Lipschitz conditions.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 4","pages":"908 - 928"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward Doubly Stochastic Differential Equations with Stochastic Non-Lipschitz Coefficients\",\"authors\":\"Si-yan Xu, Yi-dong Zhang\",\"doi\":\"10.1007/s10255-024-1137-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and time-dependent condition. As an application, we use the result to obtain the existence of stochastic viscosity solution for some nonlinear stochastic partial differential equations under stochastic non-Lipschitz conditions.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 4\",\"pages\":\"908 - 928\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1137-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1137-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Backward Doubly Stochastic Differential Equations with Stochastic Non-Lipschitz Coefficients
In this paper, we prove an existence and uniqueness theorem for backward doubly stochastic differential equations under a new kind of stochastic non-Lipschitz condition which involves stochastic and time-dependent condition. As an application, we use the result to obtain the existence of stochastic viscosity solution for some nonlinear stochastic partial differential equations under stochastic non-Lipschitz conditions.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.