D. V. Styazhkin, V. M. Yanborisov, N. V. Plotnikova, S. V. Kolesov
{"title":"异戊二烯在多中心钆催化剂上聚合的动力学常数","authors":"D. V. Styazhkin, V. M. Yanborisov, N. V. Plotnikova, S. V. Kolesov","doi":"10.1134/S1560090424601122","DOIUrl":null,"url":null,"abstract":"<p>In the description of multicenter ion-coordination polymerization of isoprene on the catalytic system GdCl<sub>3</sub>· <i>n</i>(<i>i</i>-C<sub>3</sub>Н<sub>7</sub>OH)‒Al(<i>i</i>-C<sub>4</sub>H<sub>9</sub>)<sub>3</sub> the inverse kinetic task for the scheme of a process with slow initiation has been solved. The task of determining the number of active centers of polymerization was solved by deconvolution of experimental MWDs through superposition of Flory distributions. It has been shown that four types of active centers participate in polymerization, the kinetic difference of which in the process of formation of polymer fractions with their characteristic average molecular weights and the most probable MWD, is associated with their difference in the concentrations of pre-reaction catalytic centers and the rate constants of reactions occurring on them. For each type of active centers, partial conversions of monomer consumption and rate constants of initiation, chain propagation, and chain transfer to the monomer are determined.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"66 3","pages":"321 - 331"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic Constants of Isoprene Polymerization on a Multicenter Gadolinium Catalyst\",\"authors\":\"D. V. Styazhkin, V. M. Yanborisov, N. V. Plotnikova, S. V. Kolesov\",\"doi\":\"10.1134/S1560090424601122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the description of multicenter ion-coordination polymerization of isoprene on the catalytic system GdCl<sub>3</sub>· <i>n</i>(<i>i</i>-C<sub>3</sub>Н<sub>7</sub>OH)‒Al(<i>i</i>-C<sub>4</sub>H<sub>9</sub>)<sub>3</sub> the inverse kinetic task for the scheme of a process with slow initiation has been solved. The task of determining the number of active centers of polymerization was solved by deconvolution of experimental MWDs through superposition of Flory distributions. It has been shown that four types of active centers participate in polymerization, the kinetic difference of which in the process of formation of polymer fractions with their characteristic average molecular weights and the most probable MWD, is associated with their difference in the concentrations of pre-reaction catalytic centers and the rate constants of reactions occurring on them. For each type of active centers, partial conversions of monomer consumption and rate constants of initiation, chain propagation, and chain transfer to the monomer are determined.</p>\",\"PeriodicalId\":739,\"journal\":{\"name\":\"Polymer Science, Series B\",\"volume\":\"66 3\",\"pages\":\"321 - 331\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560090424601122\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090424601122","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Kinetic Constants of Isoprene Polymerization on a Multicenter Gadolinium Catalyst
In the description of multicenter ion-coordination polymerization of isoprene on the catalytic system GdCl3· n(i-C3Н7OH)‒Al(i-C4H9)3 the inverse kinetic task for the scheme of a process with slow initiation has been solved. The task of determining the number of active centers of polymerization was solved by deconvolution of experimental MWDs through superposition of Flory distributions. It has been shown that four types of active centers participate in polymerization, the kinetic difference of which in the process of formation of polymer fractions with their characteristic average molecular weights and the most probable MWD, is associated with their difference in the concentrations of pre-reaction catalytic centers and the rate constants of reactions occurring on them. For each type of active centers, partial conversions of monomer consumption and rate constants of initiation, chain propagation, and chain transfer to the monomer are determined.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed