非同步扰动下的阿南塔克里什纳模型

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Yi-wen Tao, Sue Ann Campbell, Jing-li Ren
{"title":"非同步扰动下的阿南塔克里什纳模型","authors":"Yi-wen Tao,&nbsp;Sue Ann Campbell,&nbsp;Jing-li Ren","doi":"10.1007/s10255-024-1077-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Ananthakrishna model, seeking to explain the Portevin-Le Chatelier effect, is studied with or without non-synchronous perturbations. For the unperturbed model, Bogdanov-Takens bifurcation and zero-Hopf bifurcation are detected. For the perturbed model, rich dynamical behaviors are given by researching the Poincaré map, including solutions of different periods, quasi-periodic solutions, chaotic solutions, and bistability. Moreover, an augmented temperature-dependent perturbation amplitude induces a transition from non-serrated to serrated flow on the stress-time curve. Notably, on the stress-strain curve, the phenomenon of repeated yielding diminishes with an increase in the value of a temperature-dependent parameter, while it persists with an increase in the value of a temperature-independent parameter. Sensitivity analysis sheds light on the factors exerting the most significant influence on dislocation density.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 4","pages":"1078 - 1097"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ananthakrishna Model Under Non-synchronous Perturbation\",\"authors\":\"Yi-wen Tao,&nbsp;Sue Ann Campbell,&nbsp;Jing-li Ren\",\"doi\":\"10.1007/s10255-024-1077-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Ananthakrishna model, seeking to explain the Portevin-Le Chatelier effect, is studied with or without non-synchronous perturbations. For the unperturbed model, Bogdanov-Takens bifurcation and zero-Hopf bifurcation are detected. For the perturbed model, rich dynamical behaviors are given by researching the Poincaré map, including solutions of different periods, quasi-periodic solutions, chaotic solutions, and bistability. Moreover, an augmented temperature-dependent perturbation amplitude induces a transition from non-serrated to serrated flow on the stress-time curve. Notably, on the stress-strain curve, the phenomenon of repeated yielding diminishes with an increase in the value of a temperature-dependent parameter, while it persists with an increase in the value of a temperature-independent parameter. Sensitivity analysis sheds light on the factors exerting the most significant influence on dislocation density.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 4\",\"pages\":\"1078 - 1097\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1077-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1077-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对试图解释波特温-勒夏特列效应的阿南塔克里希纳模型进行了研究,包括有无非同步扰动。对于无扰动模型,检测到了波格丹诺夫-塔肯斯分岔和零霍普夫分岔。对于扰动模型,通过研究波恩卡莱图,可以得到丰富的动力学行为,包括不同周期的解、准周期解、混沌解和双稳态性。此外,随温度变化的扰动振幅增大会导致应力-时间曲线从无锯齿流过渡到锯齿流。值得注意的是,在应力-应变曲线上,重复屈服现象随着与温度相关的参数值的增加而减弱,而随着与温度无关的参数值的增加而持续。敏感性分析揭示了对位错密度影响最大的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ananthakrishna Model Under Non-synchronous Perturbation

The Ananthakrishna model, seeking to explain the Portevin-Le Chatelier effect, is studied with or without non-synchronous perturbations. For the unperturbed model, Bogdanov-Takens bifurcation and zero-Hopf bifurcation are detected. For the perturbed model, rich dynamical behaviors are given by researching the Poincaré map, including solutions of different periods, quasi-periodic solutions, chaotic solutions, and bistability. Moreover, an augmented temperature-dependent perturbation amplitude induces a transition from non-serrated to serrated flow on the stress-time curve. Notably, on the stress-strain curve, the phenomenon of repeated yielding diminishes with an increase in the value of a temperature-dependent parameter, while it persists with an increase in the value of a temperature-independent parameter. Sensitivity analysis sheds light on the factors exerting the most significant influence on dislocation density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信