论具有无限延迟的随机 Lotka-Volterra 系统的 β 消亡和稳定性

Pub Date : 2024-11-06 DOI:10.1007/s10255-024-1078-7
Shu-fen Zhao
{"title":"论具有无限延迟的随机 Lotka-Volterra 系统的 β 消亡和稳定性","authors":"Shu-fen Zhao","doi":"10.1007/s10255-024-1078-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a stochastic Lotka-Volterra system with infinite delay is considered. A new concept of extinction, namely, the almost sure <i>β</i>-extinction is proposed and sufficient conditions for the solution to be almost sure <i>β</i>-extinction are obtained. When the positive equilibrium exists and the intensities of the noises are small enough, any solution of the system is attracted by the positive equilibrium. Finally, numerical simulations are carried out to support the results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On β-extinction and Stability of a Stochastic Lotka-Volterra System with Infinite Delay\",\"authors\":\"Shu-fen Zhao\",\"doi\":\"10.1007/s10255-024-1078-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a stochastic Lotka-Volterra system with infinite delay is considered. A new concept of extinction, namely, the almost sure <i>β</i>-extinction is proposed and sufficient conditions for the solution to be almost sure <i>β</i>-extinction are obtained. When the positive equilibrium exists and the intensities of the noises are small enough, any solution of the system is attracted by the positive equilibrium. Finally, numerical simulations are carried out to support the results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1078-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1078-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个具有无限延迟的随机 Lotka-Volterra 系统。本文提出了一个新的消亡概念,即几乎肯定的β消亡,并得到了解几乎肯定β消亡的充分条件。当正平衡存在且噪声强度足够小时,系统的任何解都会被正平衡所吸引。最后,我们进行了数值模拟来支持这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On β-extinction and Stability of a Stochastic Lotka-Volterra System with Infinite Delay

In this paper, a stochastic Lotka-Volterra system with infinite delay is considered. A new concept of extinction, namely, the almost sure β-extinction is proposed and sufficient conditions for the solution to be almost sure β-extinction are obtained. When the positive equilibrium exists and the intensities of the noises are small enough, any solution of the system is attracted by the positive equilibrium. Finally, numerical simulations are carried out to support the results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信