外-1-平面图的无冲突入射着色

Pub Date : 2024-11-06 DOI:10.1007/s10255-024-1033-7
Meng-ke Qi, Xin Zhang
{"title":"外-1-平面图的无冲突入射着色","authors":"Meng-ke Qi,&nbsp;Xin Zhang","doi":"10.1007/s10255-024-1033-7","DOIUrl":null,"url":null,"abstract":"<div><p>An incidence of a graph <i>G</i> is a vertex-edge pair (<i>v, e</i>) such that <i>v</i> is incidence with <i>e</i>. A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences (<i>u, e</i>) and (<i>v, f</i>) get distinct colors if and only if they conflict each other, i.e., (i) <i>u = v</i>, (ii) <i>uv</i> is <i>e</i> or <i>f</i>, or (iii) there is a vertex <i>w</i> such that <i>uw</i> = <i>e</i> and <i>vw</i> = <i>f</i>. The minimum number of colors used among all conflict-free incidence colorings of a graph is the conflict-free incidence chromatic number. A graph is outer-1-planar if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once. In this paper, we show that the conflict-free incidence chromatic number of an outer-1-planar graph with maximum degree Δ is either 2Δ or 2Δ + 1 unless the graph is a cycle on three vertices, and moreover, all outer-1-planar graphs with conflict-free incidence chromatic number 2Δ or 2Δ + 1 are completely characterized. An efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph is given.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conflict-free Incidence Coloring of Outer-1-planar Graphs\",\"authors\":\"Meng-ke Qi,&nbsp;Xin Zhang\",\"doi\":\"10.1007/s10255-024-1033-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An incidence of a graph <i>G</i> is a vertex-edge pair (<i>v, e</i>) such that <i>v</i> is incidence with <i>e</i>. A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences (<i>u, e</i>) and (<i>v, f</i>) get distinct colors if and only if they conflict each other, i.e., (i) <i>u = v</i>, (ii) <i>uv</i> is <i>e</i> or <i>f</i>, or (iii) there is a vertex <i>w</i> such that <i>uw</i> = <i>e</i> and <i>vw</i> = <i>f</i>. The minimum number of colors used among all conflict-free incidence colorings of a graph is the conflict-free incidence chromatic number. A graph is outer-1-planar if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once. In this paper, we show that the conflict-free incidence chromatic number of an outer-1-planar graph with maximum degree Δ is either 2Δ or 2Δ + 1 unless the graph is a cycle on three vertices, and moreover, all outer-1-planar graphs with conflict-free incidence chromatic number 2Δ or 2Δ + 1 are completely characterized. An efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph is given.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-024-1033-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1033-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的入射是一对顶点-边对 (v,e),这样 v 就与 e 入射。图的无冲突入射着色是对入射着色的一种方式,当且仅当两个入射 (u,e) 和 (v,f) 相互冲突时,它们才会获得不同的颜色,即:(i) u = v;(ii) uv 是 e 或 f;或 (iii) 存在顶点 w,这样 uw = e 和 vw = f、(i) u = v,(ii) uv 是 e 或 f,或 (iii) 有一个顶点 w,使得 uw = e 和 vw = f。在一个图的所有无冲突入射着色中使用的最少颜色数就是无冲突入射色度数。如果一个图可以在平面上绘制,使得顶点位于外边界上,并且每条边最多被交叉一次,那么这个图就是外-1-平面图。在本文中,我们证明了最大度数为 Δ 的外-1-平面图的无冲突入射色度数为 2Δ 或 2Δ + 1,除非该图是三个顶点上的循环,此外,所有无冲突入射色度数为 2Δ 或 2Δ + 1 的外-1-平面图都是完全有特征的。给出了构建连通外-1-平面图最优无冲突入射着色的高效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Conflict-free Incidence Coloring of Outer-1-planar Graphs

An incidence of a graph G is a vertex-edge pair (v, e) such that v is incidence with e. A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences (u, e) and (v, f) get distinct colors if and only if they conflict each other, i.e., (i) u = v, (ii) uv is e or f, or (iii) there is a vertex w such that uw = e and vw = f. The minimum number of colors used among all conflict-free incidence colorings of a graph is the conflict-free incidence chromatic number. A graph is outer-1-planar if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once. In this paper, we show that the conflict-free incidence chromatic number of an outer-1-planar graph with maximum degree Δ is either 2Δ or 2Δ + 1 unless the graph is a cycle on three vertices, and moreover, all outer-1-planar graphs with conflict-free incidence chromatic number 2Δ or 2Δ + 1 are completely characterized. An efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信