{"title":"交叉条带碲锌镉探测器双通道读出配置的性能研究","authors":"Emily Enlow;Yuli Wang;Greyson Shoop;Shiva Abbaszadeh","doi":"10.1109/TRPMS.2024.3411522","DOIUrl":null,"url":null,"abstract":"In a detector system where the number of channels exceeds the number of channels available on an application-specific integrated circuit (ASIC), there is a need to configure channels among the multiple ASICs to achieve the lowest electronic noise and highest count rate. In this work, two board configurations were designed to experimentally assess which one provides the more favorable performance. In the half-half configuration, contiguous channels from one edge to the center of CZT detector are read by one ASIC, and the other half are read by the other ASIC. In the alternate configuration, the CZT channels are read by alternating ASICs. A lower electronic noise level, better FWHM energy resolution performance (5.35% \n<inline-formula> <tex-math>$\\pm ~1.08$ </tex-math></inline-formula>\n% compared to 7.84% \n<inline-formula> <tex-math>$\\pm ~0.98$ </tex-math></inline-formula>\n%), and higher count rate was found for the anode electrode strips with the half-half configuration. Cross-talk between the ASICs and deadtime play a role in the different performances, and the total count rate of the half-half configuration has a count rate 18.1% higher than that of the alternate configuration.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"886-892"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Investigations of Two Channel Readout Configurations on the Cross-Strip Cadmium Zinc Telluride Detector\",\"authors\":\"Emily Enlow;Yuli Wang;Greyson Shoop;Shiva Abbaszadeh\",\"doi\":\"10.1109/TRPMS.2024.3411522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a detector system where the number of channels exceeds the number of channels available on an application-specific integrated circuit (ASIC), there is a need to configure channels among the multiple ASICs to achieve the lowest electronic noise and highest count rate. In this work, two board configurations were designed to experimentally assess which one provides the more favorable performance. In the half-half configuration, contiguous channels from one edge to the center of CZT detector are read by one ASIC, and the other half are read by the other ASIC. In the alternate configuration, the CZT channels are read by alternating ASICs. A lower electronic noise level, better FWHM energy resolution performance (5.35% \\n<inline-formula> <tex-math>$\\\\pm ~1.08$ </tex-math></inline-formula>\\n% compared to 7.84% \\n<inline-formula> <tex-math>$\\\\pm ~0.98$ </tex-math></inline-formula>\\n%), and higher count rate was found for the anode electrode strips with the half-half configuration. Cross-talk between the ASICs and deadtime play a role in the different performances, and the total count rate of the half-half configuration has a count rate 18.1% higher than that of the alternate configuration.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"8 8\",\"pages\":\"886-892\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579894/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579894/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Performance Investigations of Two Channel Readout Configurations on the Cross-Strip Cadmium Zinc Telluride Detector
In a detector system where the number of channels exceeds the number of channels available on an application-specific integrated circuit (ASIC), there is a need to configure channels among the multiple ASICs to achieve the lowest electronic noise and highest count rate. In this work, two board configurations were designed to experimentally assess which one provides the more favorable performance. In the half-half configuration, contiguous channels from one edge to the center of CZT detector are read by one ASIC, and the other half are read by the other ASIC. In the alternate configuration, the CZT channels are read by alternating ASICs. A lower electronic noise level, better FWHM energy resolution performance (5.35%
$\pm ~1.08$
% compared to 7.84%
$\pm ~0.98$
%), and higher count rate was found for the anode electrode strips with the half-half configuration. Cross-talk between the ASICs and deadtime play a role in the different performances, and the total count rate of the half-half configuration has a count rate 18.1% higher than that of the alternate configuration.