{"title":"用户移动情况下基于 RIS 的 NLoS 近场联合位置和速度估计","authors":"Moustafa Rahal;Benoit Denis;Musa Furkan Keskin;Bernard Uguen;Henk Wymeersch","doi":"10.1109/JSTSP.2024.3414110","DOIUrl":null,"url":null,"abstract":"In the context of single-base station (BS) non-line-of-sight (NLoS) single-epoch localization with the aid of a reflective reconfigurable intelligent surface (RIS), this paper introduces a novel three-step algorithm that jointly estimates the position and velocity of a mobile user equipment (UE), while compensating for the Doppler effects observed in near-field (NF) at the RIS elements over the short transmission duration of a sequence of downlink (DL) pilot symbols. First, a low-complexity initialization procedure is proposed, relying in part on far-field (FF) approximation and a static user assumption. Then, an alternating optimization procedure is designed to iteratively refine the velocity and position estimates, as well as the channel gain. The refinement routines leverage small angle approximations and the linearization of the RIS response, accounting for both NF and mobility effects. We evaluate the performance of the proposed algorithm through extensive simulations under diverse operating conditions with regard to signal-to-noise ratio (SNR), UE mobility, uncontrolled multipath and RIS-UE distance. Our results reveal remarkable performance improvements over the state-of-the-art (SoTA) mobility-agnostic benchmark algorithm, while indicating convergence of the proposed algorithm to respective theoretical bounds on position and velocity estimation.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 4","pages":"633-645"},"PeriodicalIF":8.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIS-Enabled NLoS Near-Field Joint Position and Velocity Estimation Under User Mobility\",\"authors\":\"Moustafa Rahal;Benoit Denis;Musa Furkan Keskin;Bernard Uguen;Henk Wymeersch\",\"doi\":\"10.1109/JSTSP.2024.3414110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of single-base station (BS) non-line-of-sight (NLoS) single-epoch localization with the aid of a reflective reconfigurable intelligent surface (RIS), this paper introduces a novel three-step algorithm that jointly estimates the position and velocity of a mobile user equipment (UE), while compensating for the Doppler effects observed in near-field (NF) at the RIS elements over the short transmission duration of a sequence of downlink (DL) pilot symbols. First, a low-complexity initialization procedure is proposed, relying in part on far-field (FF) approximation and a static user assumption. Then, an alternating optimization procedure is designed to iteratively refine the velocity and position estimates, as well as the channel gain. The refinement routines leverage small angle approximations and the linearization of the RIS response, accounting for both NF and mobility effects. We evaluate the performance of the proposed algorithm through extensive simulations under diverse operating conditions with regard to signal-to-noise ratio (SNR), UE mobility, uncontrolled multipath and RIS-UE distance. Our results reveal remarkable performance improvements over the state-of-the-art (SoTA) mobility-agnostic benchmark algorithm, while indicating convergence of the proposed algorithm to respective theoretical bounds on position and velocity estimation.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":\"18 4\",\"pages\":\"633-645\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10557490/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10557490/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
RIS-Enabled NLoS Near-Field Joint Position and Velocity Estimation Under User Mobility
In the context of single-base station (BS) non-line-of-sight (NLoS) single-epoch localization with the aid of a reflective reconfigurable intelligent surface (RIS), this paper introduces a novel three-step algorithm that jointly estimates the position and velocity of a mobile user equipment (UE), while compensating for the Doppler effects observed in near-field (NF) at the RIS elements over the short transmission duration of a sequence of downlink (DL) pilot symbols. First, a low-complexity initialization procedure is proposed, relying in part on far-field (FF) approximation and a static user assumption. Then, an alternating optimization procedure is designed to iteratively refine the velocity and position estimates, as well as the channel gain. The refinement routines leverage small angle approximations and the linearization of the RIS response, accounting for both NF and mobility effects. We evaluate the performance of the proposed algorithm through extensive simulations under diverse operating conditions with regard to signal-to-noise ratio (SNR), UE mobility, uncontrolled multipath and RIS-UE distance. Our results reveal remarkable performance improvements over the state-of-the-art (SoTA) mobility-agnostic benchmark algorithm, while indicating convergence of the proposed algorithm to respective theoretical bounds on position and velocity estimation.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.