Ziyi Wang;Zhenyu Liu;Yuan Shen;Andrea Conti;Moe Z. Win
{"title":"利用合成可重构智能表面进行全息定位","authors":"Ziyi Wang;Zhenyu Liu;Yuan Shen;Andrea Conti;Moe Z. Win","doi":"10.1109/JSTSP.2024.3435465","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surfaces (RISs) are proposed to control complex wireless environments in next-generation networks. In particular, wideband RISs can play a key role in high-accuracy location awareness, which calls for models that consider the frequency-selectivity of metasurfaces. This paper presents a general signal model for wideband systems with RISs and establishes a Fisher information analysis to determine the theoretical limits of wideband localization with RISs. In addition, synthetic RISs are proposed to mitigate the multiplicative fading effect caused by the scattering property of RISs. Special scenarios including complete coupling and complete decoupling are further investigated. Results show that with the proposed models, a wideband RIS with a polynomial phase response per element provides more position information than those with more degrees of freedom (DOFs) in piecewise-constant phase response per element. Furthermore, velocity-induced information allows a dynamic RIS to provide more position information than a static RIS. Additionally, a dynamic RIS can be synthesized through multiple measurements to outperform a large one.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holographic Localization With Synthetic Reconfigurable Intelligent Surfaces\",\"authors\":\"Ziyi Wang;Zhenyu Liu;Yuan Shen;Andrea Conti;Moe Z. Win\",\"doi\":\"10.1109/JSTSP.2024.3435465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable intelligent surfaces (RISs) are proposed to control complex wireless environments in next-generation networks. In particular, wideband RISs can play a key role in high-accuracy location awareness, which calls for models that consider the frequency-selectivity of metasurfaces. This paper presents a general signal model for wideband systems with RISs and establishes a Fisher information analysis to determine the theoretical limits of wideband localization with RISs. In addition, synthetic RISs are proposed to mitigate the multiplicative fading effect caused by the scattering property of RISs. Special scenarios including complete coupling and complete decoupling are further investigated. Results show that with the proposed models, a wideband RIS with a polynomial phase response per element provides more position information than those with more degrees of freedom (DOFs) in piecewise-constant phase response per element. Furthermore, velocity-induced information allows a dynamic RIS to provide more position information than a static RIS. Additionally, a dynamic RIS can be synthesized through multiple measurements to outperform a large one.\",\"PeriodicalId\":13038,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10733829/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10733829/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Holographic Localization With Synthetic Reconfigurable Intelligent Surfaces
Reconfigurable intelligent surfaces (RISs) are proposed to control complex wireless environments in next-generation networks. In particular, wideband RISs can play a key role in high-accuracy location awareness, which calls for models that consider the frequency-selectivity of metasurfaces. This paper presents a general signal model for wideband systems with RISs and establishes a Fisher information analysis to determine the theoretical limits of wideband localization with RISs. In addition, synthetic RISs are proposed to mitigate the multiplicative fading effect caused by the scattering property of RISs. Special scenarios including complete coupling and complete decoupling are further investigated. Results show that with the proposed models, a wideband RIS with a polynomial phase response per element provides more position information than those with more degrees of freedom (DOFs) in piecewise-constant phase response per element. Furthermore, velocity-induced information allows a dynamic RIS to provide more position information than a static RIS. Additionally, a dynamic RIS can be synthesized through multiple measurements to outperform a large one.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.