{"title":"基于微球碲纤维探针的法布里-珀罗干涉仪传感器,用于温度和水压测量","authors":"Deyuan Zhong;Yuhan Qu;Qi Wang;Xue Zhou;Xin Yan;Tonglei Cheng","doi":"10.1109/TIM.2024.3485459","DOIUrl":null,"url":null,"abstract":"In this article, a tellurite fiber (TF) was fabricated into a microsphere structure via discharge and sequentially coupled with a multimode fiber and a single-mode fiber (SMF) to form a Fabry-Perot interferometer (FPI) sensor. Changes in temperature and hydraulic pressure cause the microsphere to deform, altering the interference length of reflected lights and establishing their dependency relationship. Experimental results showed that the proposed FPI sensor had temperature sensitivity of 157 pm/°C and hydraulic pressure sensitivity of 11.4 pm/MPa. In addition, repetitive experiments and stability tests were conducted, and the maximum relative standard deviation (RSD) was calculated to be \n<inline-formula> <tex-math>$4.34\\times 10^{-4}$ </tex-math></inline-formula>\n for temperature and \n<inline-formula> <tex-math>$4.48\\times 10^{-4}$ </tex-math></inline-formula>\n for hydra- ulic pressure. This FPI sensor is characterized by small size, compact structure, high sensitivity, long-term accuracy, and good stability and repeatability. All these features render it suitable for real-time temperature and hydraulic pressure monitoring in complex environments. In addition, the tellurite compositions can be adjusted to help adapt the FPI sensor to specific external environmental conditions, which provides valuable theoretical and technical insights for the development of high-performance sensing devices.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fabry-Perot Interferometer Sensor Based on a Microsphere Tellurite Fiber Probe for Temperature and Hydraulic Pressure Measurement\",\"authors\":\"Deyuan Zhong;Yuhan Qu;Qi Wang;Xue Zhou;Xin Yan;Tonglei Cheng\",\"doi\":\"10.1109/TIM.2024.3485459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a tellurite fiber (TF) was fabricated into a microsphere structure via discharge and sequentially coupled with a multimode fiber and a single-mode fiber (SMF) to form a Fabry-Perot interferometer (FPI) sensor. Changes in temperature and hydraulic pressure cause the microsphere to deform, altering the interference length of reflected lights and establishing their dependency relationship. Experimental results showed that the proposed FPI sensor had temperature sensitivity of 157 pm/°C and hydraulic pressure sensitivity of 11.4 pm/MPa. In addition, repetitive experiments and stability tests were conducted, and the maximum relative standard deviation (RSD) was calculated to be \\n<inline-formula> <tex-math>$4.34\\\\times 10^{-4}$ </tex-math></inline-formula>\\n for temperature and \\n<inline-formula> <tex-math>$4.48\\\\times 10^{-4}$ </tex-math></inline-formula>\\n for hydra- ulic pressure. This FPI sensor is characterized by small size, compact structure, high sensitivity, long-term accuracy, and good stability and repeatability. All these features render it suitable for real-time temperature and hydraulic pressure monitoring in complex environments. In addition, the tellurite compositions can be adjusted to help adapt the FPI sensor to specific external environmental conditions, which provides valuable theoretical and technical insights for the development of high-performance sensing devices.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10731926/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731926/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Fabry-Perot Interferometer Sensor Based on a Microsphere Tellurite Fiber Probe for Temperature and Hydraulic Pressure Measurement
In this article, a tellurite fiber (TF) was fabricated into a microsphere structure via discharge and sequentially coupled with a multimode fiber and a single-mode fiber (SMF) to form a Fabry-Perot interferometer (FPI) sensor. Changes in temperature and hydraulic pressure cause the microsphere to deform, altering the interference length of reflected lights and establishing their dependency relationship. Experimental results showed that the proposed FPI sensor had temperature sensitivity of 157 pm/°C and hydraulic pressure sensitivity of 11.4 pm/MPa. In addition, repetitive experiments and stability tests were conducted, and the maximum relative standard deviation (RSD) was calculated to be
$4.34\times 10^{-4}$
for temperature and
$4.48\times 10^{-4}$
for hydra- ulic pressure. This FPI sensor is characterized by small size, compact structure, high sensitivity, long-term accuracy, and good stability and repeatability. All these features render it suitable for real-time temperature and hydraulic pressure monitoring in complex environments. In addition, the tellurite compositions can be adjusted to help adapt the FPI sensor to specific external environmental conditions, which provides valuable theoretical and technical insights for the development of high-performance sensing devices.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.