细化无小度干生成树存在的度数条件

IF 0.7 3区 数学 Q2 MATHEMATICS
Michitaka Furuya , Akira Saito , Shoichi Tsuchiya
{"title":"细化无小度干生成树存在的度数条件","authors":"Michitaka Furuya ,&nbsp;Akira Saito ,&nbsp;Shoichi Tsuchiya","doi":"10.1016/j.disc.2024.114307","DOIUrl":null,"url":null,"abstract":"<div><div>A spanning tree of a graph without vertices of degree 2 is called a <em>homeomorphically irreducible spanning tree</em> (or a <em>HIST</em>) of the graph. Albertson et al. (1990) <span><span>[1]</span></span> gave a minimum degree condition for the existence of a HIST, and recently, Ito and Tsuchiya (2022) <span><span>[11]</span></span> found a sharp degree-sum condition for the existence of a HIST. In this paper, we refine these results, and extend the first one to a spanning tree in which no vertex other than the endvertices has small degree.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114307"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinements of degree conditions for the existence of a spanning tree without small degree stems\",\"authors\":\"Michitaka Furuya ,&nbsp;Akira Saito ,&nbsp;Shoichi Tsuchiya\",\"doi\":\"10.1016/j.disc.2024.114307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A spanning tree of a graph without vertices of degree 2 is called a <em>homeomorphically irreducible spanning tree</em> (or a <em>HIST</em>) of the graph. Albertson et al. (1990) <span><span>[1]</span></span> gave a minimum degree condition for the existence of a HIST, and recently, Ito and Tsuchiya (2022) <span><span>[11]</span></span> found a sharp degree-sum condition for the existence of a HIST. In this paper, we refine these results, and extend the first one to a spanning tree in which no vertex other than the endvertices has small degree.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 2\",\"pages\":\"Article 114307\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004382\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004382","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

没有阶数为 2 的顶点的图的生成树称为图的同构不可还原生成树(或 HIST)。Albertson 等人(1990)[1] 给出了 HIST 存在的最小度条件,最近,Ito 和 Tsuchiya(2022)[11] 发现了 HIST 存在的尖锐度和条件。在本文中,我们完善了这些结果,并将第一个结果扩展到了除端顶点外没有其他顶点具有小度的生成树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinements of degree conditions for the existence of a spanning tree without small degree stems
A spanning tree of a graph without vertices of degree 2 is called a homeomorphically irreducible spanning tree (or a HIST) of the graph. Albertson et al. (1990) [1] gave a minimum degree condition for the existence of a HIST, and recently, Ito and Tsuchiya (2022) [11] found a sharp degree-sum condition for the existence of a HIST. In this paper, we refine these results, and extend the first one to a spanning tree in which no vertex other than the endvertices has small degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信