WaterHE-NeRF:用于水下场景重建的水射线匹配神经辐射场

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingchun Zhou , Tianyu Liang , Dehuan Zhang , Siyuan Liu , Junsheng Wang , Edmond Q. Wu
{"title":"WaterHE-NeRF:用于水下场景重建的水射线匹配神经辐射场","authors":"Jingchun Zhou ,&nbsp;Tianyu Liang ,&nbsp;Dehuan Zhang ,&nbsp;Siyuan Liu ,&nbsp;Junsheng Wang ,&nbsp;Edmond Q. Wu","doi":"10.1016/j.inffus.2024.102770","DOIUrl":null,"url":null,"abstract":"<div><div>Neural Radiance Field (NeRF) technology demonstrates immense potential in novel viewpoint synthesis tasks due to its physics-based volumetric rendering process, which is particularly promising in underwater scenes. However, existing underwater NeRF methods face challenges in handling light attenuation caused by the water medium and the lack of real Ground Truth (GT) supervision. To address these issues, we propose WaterHE-NeRF, a novel approach incorporating a water-ray matching field developed based on Retinex theory. This field precisely encodes color, density, and illuminance attenuation in three-dimensional space. WaterHE-NeRF employs an illuminance attenuation mechanism to generate degraded and clear multi-view images, optimizing image restoration by combining reconstruction loss with Wasserstein distance. Furthermore, using histogram equalization (HE) as pseudo-GT, WaterHE-NeRF enhances the network’s accuracy in preserving original details and color distribution. Extensive experiments on real underwater and synthetic datasets validate the effectiveness of WaterHE-NeRF.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102770"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WaterHE-NeRF: Water-ray matching neural radiance fields for underwater scene reconstruction\",\"authors\":\"Jingchun Zhou ,&nbsp;Tianyu Liang ,&nbsp;Dehuan Zhang ,&nbsp;Siyuan Liu ,&nbsp;Junsheng Wang ,&nbsp;Edmond Q. Wu\",\"doi\":\"10.1016/j.inffus.2024.102770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neural Radiance Field (NeRF) technology demonstrates immense potential in novel viewpoint synthesis tasks due to its physics-based volumetric rendering process, which is particularly promising in underwater scenes. However, existing underwater NeRF methods face challenges in handling light attenuation caused by the water medium and the lack of real Ground Truth (GT) supervision. To address these issues, we propose WaterHE-NeRF, a novel approach incorporating a water-ray matching field developed based on Retinex theory. This field precisely encodes color, density, and illuminance attenuation in three-dimensional space. WaterHE-NeRF employs an illuminance attenuation mechanism to generate degraded and clear multi-view images, optimizing image restoration by combining reconstruction loss with Wasserstein distance. Furthermore, using histogram equalization (HE) as pseudo-GT, WaterHE-NeRF enhances the network’s accuracy in preserving original details and color distribution. Extensive experiments on real underwater and synthetic datasets validate the effectiveness of WaterHE-NeRF.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"115 \",\"pages\":\"Article 102770\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524005487\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005487","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

神经辐射场(NeRF)技术因其基于物理的体积渲染过程而在新颖的视点合成任务中展现出巨大的潜力,在水下场景中尤其大有可为。然而,现有的水下 NeRF 方法在处理水介质造成的光衰减和缺乏真实地面实况(GT)监督方面面临挑战。为了解决这些问题,我们提出了 WaterHE-NeRF 方法,这是一种结合了基于 Retinex 理论开发的水光匹配场的新方法。该场精确地编码了三维空间中的颜色、密度和照度衰减。WaterHE-NeRF 采用照度衰减机制来生成退化和清晰的多视角图像,通过将重建损失与瓦瑟斯坦距离相结合来优化图像修复。此外,WaterHE-NeRF 利用直方图均衡(HE)作为伪 GT,提高了网络在保留原始细节和色彩分布方面的准确性。在真实水下和合成数据集上进行的大量实验验证了 WaterHE-NeRF 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WaterHE-NeRF: Water-ray matching neural radiance fields for underwater scene reconstruction
Neural Radiance Field (NeRF) technology demonstrates immense potential in novel viewpoint synthesis tasks due to its physics-based volumetric rendering process, which is particularly promising in underwater scenes. However, existing underwater NeRF methods face challenges in handling light attenuation caused by the water medium and the lack of real Ground Truth (GT) supervision. To address these issues, we propose WaterHE-NeRF, a novel approach incorporating a water-ray matching field developed based on Retinex theory. This field precisely encodes color, density, and illuminance attenuation in three-dimensional space. WaterHE-NeRF employs an illuminance attenuation mechanism to generate degraded and clear multi-view images, optimizing image restoration by combining reconstruction loss with Wasserstein distance. Furthermore, using histogram equalization (HE) as pseudo-GT, WaterHE-NeRF enhances the network’s accuracy in preserving original details and color distribution. Extensive experiments on real underwater and synthetic datasets validate the effectiveness of WaterHE-NeRF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信