纳米纤维素增强型水溶性醋酸纤维素薄膜的制备与表征

IF 4.5 3区 工程技术 Q1 CHEMISTRY, APPLIED
Hongrun Chen , Gaoyuan Hou , Korawit Chitbanyong , Miyuki Takeuchi , Izumi Shibata , Akira Isogai
{"title":"纳米纤维素增强型水溶性醋酸纤维素薄膜的制备与表征","authors":"Hongrun Chen ,&nbsp;Gaoyuan Hou ,&nbsp;Korawit Chitbanyong ,&nbsp;Miyuki Takeuchi ,&nbsp;Izumi Shibata ,&nbsp;Akira Isogai","doi":"10.1016/j.reactfunctpolym.2024.106083","DOIUrl":null,"url":null,"abstract":"<div><div>A water-soluble cellulose acetate (CA) with a degree of acetyl substitution of 0.9 was dissolved in water and mixed with aqueous dispersions of reinforcing cellulose nanofibers (CNFs) at various mass ratios. CA/CNF composite films with CNF contents of 0 %–16 % were prepared by casting and drying the mixtures to improve the fundamental properties of the films. Aqueous dispersions of TEMPO-CNFs containing sodium carboxylate and protonated carboxy groups were separately prepared and used to produce CA composite films (TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxyl radical). Highly transparent CA/TEMPO-CNF films with tensile strengths and Young's moduli more than twofold those of the 100 % CA film were obtained at a TEMPO-CNF content of 16 %. Transmission electron microscopy images of the film cross-sections showed that the TEMPO-CNFs were almost homogeneously and individually distributed in the CA/TEMPO-CNF-COOH composite films. The thermal expansion patterns of the 100 % CA films were characteristically wavy between 30 and 100 °C, and the thermal expansion ratios decreased as the TEMPO-CNF contents of the films increased. The obtained results indicate that CA/CNF mixtures can be used as water-based coatings and paints with favorable properties.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"205 ","pages":"Article 106083"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of nanocellulose-reinforced water-soluble cellulose acetate films\",\"authors\":\"Hongrun Chen ,&nbsp;Gaoyuan Hou ,&nbsp;Korawit Chitbanyong ,&nbsp;Miyuki Takeuchi ,&nbsp;Izumi Shibata ,&nbsp;Akira Isogai\",\"doi\":\"10.1016/j.reactfunctpolym.2024.106083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A water-soluble cellulose acetate (CA) with a degree of acetyl substitution of 0.9 was dissolved in water and mixed with aqueous dispersions of reinforcing cellulose nanofibers (CNFs) at various mass ratios. CA/CNF composite films with CNF contents of 0 %–16 % were prepared by casting and drying the mixtures to improve the fundamental properties of the films. Aqueous dispersions of TEMPO-CNFs containing sodium carboxylate and protonated carboxy groups were separately prepared and used to produce CA composite films (TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxyl radical). Highly transparent CA/TEMPO-CNF films with tensile strengths and Young's moduli more than twofold those of the 100 % CA film were obtained at a TEMPO-CNF content of 16 %. Transmission electron microscopy images of the film cross-sections showed that the TEMPO-CNFs were almost homogeneously and individually distributed in the CA/TEMPO-CNF-COOH composite films. The thermal expansion patterns of the 100 % CA films were characteristically wavy between 30 and 100 °C, and the thermal expansion ratios decreased as the TEMPO-CNF contents of the films increased. The obtained results indicate that CA/CNF mixtures can be used as water-based coatings and paints with favorable properties.</div></div>\",\"PeriodicalId\":20916,\"journal\":{\"name\":\"Reactive & Functional Polymers\",\"volume\":\"205 \",\"pages\":\"Article 106083\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive & Functional Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138151482400258X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138151482400258X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

将乙酰取代度为 0.9 的水溶性醋酸纤维素(CA)溶于水,并与不同质量比的增强纤维素纳米纤维(CNF)水分散液混合。通过浇铸和干燥混合物,制备出 CNF 含量为 0 %-16 % 的 CA/CNF 复合薄膜,以改善薄膜的基本特性。分别制备了含有羧基钠和质子化羧基的 TEMPO-CNF 水分散体,并将其用于生产 CA 复合薄膜(TEMPO = 2,2,6,6- 四甲基哌啶-1-氧自由基)。当 TEMPO-CNF 含量为 16% 时,可获得高透明度的 CA/TEMPO-CNF 薄膜,其拉伸强度和杨氏模量是 100% CA 薄膜的两倍以上。薄膜横截面的透射电子显微镜图像显示,TEMPO-CNF 几乎均匀且单独地分布在 CA/TEMPO-CNF-COOH 复合薄膜中。100 % CA 薄膜的热膨胀图在 30 至 100 °C 之间呈波浪状,热膨胀比随着薄膜中 TEMPO-CNF 含量的增加而降低。研究结果表明,CA/CNF 混合物可用作水基涂料和油漆,并具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation and characterization of nanocellulose-reinforced water-soluble cellulose acetate films

Preparation and characterization of nanocellulose-reinforced water-soluble cellulose acetate films
A water-soluble cellulose acetate (CA) with a degree of acetyl substitution of 0.9 was dissolved in water and mixed with aqueous dispersions of reinforcing cellulose nanofibers (CNFs) at various mass ratios. CA/CNF composite films with CNF contents of 0 %–16 % were prepared by casting and drying the mixtures to improve the fundamental properties of the films. Aqueous dispersions of TEMPO-CNFs containing sodium carboxylate and protonated carboxy groups were separately prepared and used to produce CA composite films (TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxyl radical). Highly transparent CA/TEMPO-CNF films with tensile strengths and Young's moduli more than twofold those of the 100 % CA film were obtained at a TEMPO-CNF content of 16 %. Transmission electron microscopy images of the film cross-sections showed that the TEMPO-CNFs were almost homogeneously and individually distributed in the CA/TEMPO-CNF-COOH composite films. The thermal expansion patterns of the 100 % CA films were characteristically wavy between 30 and 100 °C, and the thermal expansion ratios decreased as the TEMPO-CNF contents of the films increased. The obtained results indicate that CA/CNF mixtures can be used as water-based coatings and paints with favorable properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reactive & Functional Polymers
Reactive & Functional Polymers 工程技术-高分子科学
CiteScore
8.90
自引率
5.90%
发文量
259
审稿时长
27 days
期刊介绍: Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers. Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信