(3+1)-dimensional BKP-Boussinesq-like equation 的块解和交互解

IF 1.2 3区 数学 Q1 MATHEMATICS
Xiyan Yang, Liangping Tang, Xinyi Gu, Wenxia Chen, Lixin Tian
{"title":"(3+1)-dimensional BKP-Boussinesq-like equation 的块解和交互解","authors":"Xiyan Yang,&nbsp;Liangping Tang,&nbsp;Xinyi Gu,&nbsp;Wenxia Chen,&nbsp;Lixin Tian","doi":"10.1016/j.jmaa.2024.129030","DOIUrl":null,"url":null,"abstract":"<div><div>This paper analyzes the (3+1)-dimensional BKP-Boussinesq-like equation, which is widely used to describe and understand nonlinear wave phenomena. We extend Hirota's bilinear method and obtain the generalized bilinear operator. When the prime number <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span>, the generalized bilinear form of BKP-Boussinesq-like equation is constructed. Based on its bilinear expression, we explore the lump and lump-soliton solutions to the equation, and analyze the dynamic characteristics and properties of soliton solutions with plots.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129030"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lump and interaction solutions to a (3+1)-dimensional BKP-Boussinesq-like equation\",\"authors\":\"Xiyan Yang,&nbsp;Liangping Tang,&nbsp;Xinyi Gu,&nbsp;Wenxia Chen,&nbsp;Lixin Tian\",\"doi\":\"10.1016/j.jmaa.2024.129030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper analyzes the (3+1)-dimensional BKP-Boussinesq-like equation, which is widely used to describe and understand nonlinear wave phenomena. We extend Hirota's bilinear method and obtain the generalized bilinear operator. When the prime number <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span>, the generalized bilinear form of BKP-Boussinesq-like equation is constructed. Based on its bilinear expression, we explore the lump and lump-soliton solutions to the equation, and analyze the dynamic characteristics and properties of soliton solutions with plots.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129030\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009521\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009521","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了 (3+1) 维 BKP-Boussinesq 类方程,该方程被广泛用于描述和理解非线性波现象。我们扩展了 Hirota 的双线性方法,得到了广义双线性算子。当质数 p=3 时,构建了 BKP-Boussinesq 类方程的广义双线性形式。基于其双线性表达式,我们探索了方程的块解和块-孤子解,并用曲线图分析了孤子解的动态特征和性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lump and interaction solutions to a (3+1)-dimensional BKP-Boussinesq-like equation
This paper analyzes the (3+1)-dimensional BKP-Boussinesq-like equation, which is widely used to describe and understand nonlinear wave phenomena. We extend Hirota's bilinear method and obtain the generalized bilinear operator. When the prime number p=3, the generalized bilinear form of BKP-Boussinesq-like equation is constructed. Based on its bilinear expression, we explore the lump and lump-soliton solutions to the equation, and analyze the dynamic characteristics and properties of soliton solutions with plots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信