具有随机系数的艾伦-卡恩方程分岔的不确定性量化分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Christian Kuehn , Chiara Piazzola , Elisabeth Ullmann
{"title":"具有随机系数的艾伦-卡恩方程分岔的不确定性量化分析","authors":"Christian Kuehn ,&nbsp;Chiara Piazzola ,&nbsp;Elisabeth Ullmann","doi":"10.1016/j.physd.2024.134390","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we consider the Allen–Cahn equation, a prototypical model problem in nonlinear dynamics that exhibits bifurcations corresponding to variations of a deterministic bifurcation parameter. Going beyond the state-of-the-art, we introduce a random coefficient in the linear reaction part of the equation, thereby accounting for random, spatially-heterogeneous effects. Importantly, we assume a spatially constant, deterministic mean value of the random coefficient. We show that this mean value is in fact a bifurcation parameter in the Allen–Cahn equation with random coefficients. Moreover, we show that the bifurcation points and bifurcation curves become random objects. We consider two distinct modeling situations: <span><math><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></math></span> for a spatially-homogeneous coefficient we derive analytical expressions for the distribution of the bifurcation points and show that the bifurcation curves are random shifts of a fixed reference curve; <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span> for a spatially-heterogeneous coefficient we employ a generalized polynomial chaos expansion to approximate the statistical properties of the random bifurcation points and bifurcation curves. We present numerical examples in 1D physical space, where we combine the popular software package Continuation Core and Toolboxes (COCO) for numerical continuation and the Sparse Grids Matlab Kit for the polynomial chaos expansion. Our exposition addresses both dynamical systems and uncertainty quantification, highlighting how analytical and numerical tools from both areas can be combined efficiently for the challenging uncertainty quantification analysis of bifurcations in random differential equations.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification analysis of bifurcations of the Allen–Cahn equation with random coefficients\",\"authors\":\"Christian Kuehn ,&nbsp;Chiara Piazzola ,&nbsp;Elisabeth Ullmann\",\"doi\":\"10.1016/j.physd.2024.134390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work we consider the Allen–Cahn equation, a prototypical model problem in nonlinear dynamics that exhibits bifurcations corresponding to variations of a deterministic bifurcation parameter. Going beyond the state-of-the-art, we introduce a random coefficient in the linear reaction part of the equation, thereby accounting for random, spatially-heterogeneous effects. Importantly, we assume a spatially constant, deterministic mean value of the random coefficient. We show that this mean value is in fact a bifurcation parameter in the Allen–Cahn equation with random coefficients. Moreover, we show that the bifurcation points and bifurcation curves become random objects. We consider two distinct modeling situations: <span><math><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></math></span> for a spatially-homogeneous coefficient we derive analytical expressions for the distribution of the bifurcation points and show that the bifurcation curves are random shifts of a fixed reference curve; <span><math><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow></math></span> for a spatially-heterogeneous coefficient we employ a generalized polynomial chaos expansion to approximate the statistical properties of the random bifurcation points and bifurcation curves. We present numerical examples in 1D physical space, where we combine the popular software package Continuation Core and Toolboxes (COCO) for numerical continuation and the Sparse Grids Matlab Kit for the polynomial chaos expansion. Our exposition addresses both dynamical systems and uncertainty quantification, highlighting how analytical and numerical tools from both areas can be combined efficiently for the challenging uncertainty quantification analysis of bifurcations in random differential equations.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑了艾伦-卡恩方程,这是非线性动力学中的一个典型模型问题,它表现出与确定性分岔参数变化相对应的分岔。我们在方程的线性反应部分引入了随机系数,从而考虑了随机的空间异质效应。重要的是,我们假设随机系数的平均值在空间上是恒定的、确定的。我们证明,这个平均值实际上是带有随机系数的艾伦-卡恩方程中的分岔参数。此外,我们还证明了分岔点和分岔曲线成为随机对象。我们考虑了两种不同的建模情况:(i) 对于空间均质系数,我们推导出分岔点分布的解析表达式,并证明分岔曲线是固定参考曲线的随机移动;(ii) 对于空间均质系数,我们采用广义多项式混沌展开来近似随机分岔点和分岔曲线的统计特性。我们结合常用的软件包 Continuation Core and Toolboxes (COCO) 进行数值延续,并结合 Sparse Grids Matlab Kit 进行多项式混沌扩展,展示了一维物理空间中的数值示例。我们的论述同时涉及动力学系统和不确定性量化,强调了如何将这两个领域的分析和数值工具有效地结合起来,对随机微分方程的分岔进行具有挑战性的不确定性量化分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty quantification analysis of bifurcations of the Allen–Cahn equation with random coefficients
In this work we consider the Allen–Cahn equation, a prototypical model problem in nonlinear dynamics that exhibits bifurcations corresponding to variations of a deterministic bifurcation parameter. Going beyond the state-of-the-art, we introduce a random coefficient in the linear reaction part of the equation, thereby accounting for random, spatially-heterogeneous effects. Importantly, we assume a spatially constant, deterministic mean value of the random coefficient. We show that this mean value is in fact a bifurcation parameter in the Allen–Cahn equation with random coefficients. Moreover, we show that the bifurcation points and bifurcation curves become random objects. We consider two distinct modeling situations: (i) for a spatially-homogeneous coefficient we derive analytical expressions for the distribution of the bifurcation points and show that the bifurcation curves are random shifts of a fixed reference curve; (ii) for a spatially-heterogeneous coefficient we employ a generalized polynomial chaos expansion to approximate the statistical properties of the random bifurcation points and bifurcation curves. We present numerical examples in 1D physical space, where we combine the popular software package Continuation Core and Toolboxes (COCO) for numerical continuation and the Sparse Grids Matlab Kit for the polynomial chaos expansion. Our exposition addresses both dynamical systems and uncertainty quantification, highlighting how analytical and numerical tools from both areas can be combined efficiently for the challenging uncertainty quantification analysis of bifurcations in random differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信