Juhan Lee, Seokhyeon Hong, Youngsoo Kim, Seung Hyeon Hong, Bokyung Kim, Soon-Hong Kwon
{"title":"利用随机定位的铝纳米孔实现光子物理不可克隆功能","authors":"Juhan Lee, Seokhyeon Hong, Youngsoo Kim, Seung Hyeon Hong, Bokyung Kim, Soon-Hong Kwon","doi":"10.1016/j.optcom.2024.131273","DOIUrl":null,"url":null,"abstract":"<div><div>With the advancement of the Internet of Things, the volume of information and communication has significantly increased, highlighting the critical need for enhanced data security. Physically unclonable functions (PUFs), which generate encryption keys through nondeterministic and replication-resistant methods, have been proposed as a solution. Among the various types of PUFs, optical-based PUFs are gaining attention owing to their ability to leverage light for rapid measurements and their superior resistance and complexity to replication compared to other methods. In this study, we proposed a photonic PUF based on an aluminum film structure with randomly positioned nanoholes on a substrate. Light transmission through this structure resulted in scattering owing to localized and propagating surface plasmon resonances. The resulting image was digitized to generate an encryption key. Our tests involved adjusting the filling factor (FF) and pixel size, yielding a high randomness of 49.87% and a high bit density of 1.6 × 10<sup>7</sup> bits/cm<sup>2</sup>. The independent bits produced a total of 258 bits, closely matching the actual bit count of 256 bits. Furthermore, applying a Gaussian distribution to the hole sizes, assuming a more realistic scenario, yielded favorable results. This structure is cost-effective owing to the simplicity of its materials, production method, and design. Additionally, its compact size of 40 μm × 40 μm makes it ideal for miniaturization and integration into various applications.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131273"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic physically unclonable functions using randomly positioned aluminum nanoholes\",\"authors\":\"Juhan Lee, Seokhyeon Hong, Youngsoo Kim, Seung Hyeon Hong, Bokyung Kim, Soon-Hong Kwon\",\"doi\":\"10.1016/j.optcom.2024.131273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the advancement of the Internet of Things, the volume of information and communication has significantly increased, highlighting the critical need for enhanced data security. Physically unclonable functions (PUFs), which generate encryption keys through nondeterministic and replication-resistant methods, have been proposed as a solution. Among the various types of PUFs, optical-based PUFs are gaining attention owing to their ability to leverage light for rapid measurements and their superior resistance and complexity to replication compared to other methods. In this study, we proposed a photonic PUF based on an aluminum film structure with randomly positioned nanoholes on a substrate. Light transmission through this structure resulted in scattering owing to localized and propagating surface plasmon resonances. The resulting image was digitized to generate an encryption key. Our tests involved adjusting the filling factor (FF) and pixel size, yielding a high randomness of 49.87% and a high bit density of 1.6 × 10<sup>7</sup> bits/cm<sup>2</sup>. The independent bits produced a total of 258 bits, closely matching the actual bit count of 256 bits. Furthermore, applying a Gaussian distribution to the hole sizes, assuming a more realistic scenario, yielded favorable results. This structure is cost-effective owing to the simplicity of its materials, production method, and design. Additionally, its compact size of 40 μm × 40 μm makes it ideal for miniaturization and integration into various applications.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"575 \",\"pages\":\"Article 131273\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824010101\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Photonic physically unclonable functions using randomly positioned aluminum nanoholes
With the advancement of the Internet of Things, the volume of information and communication has significantly increased, highlighting the critical need for enhanced data security. Physically unclonable functions (PUFs), which generate encryption keys through nondeterministic and replication-resistant methods, have been proposed as a solution. Among the various types of PUFs, optical-based PUFs are gaining attention owing to their ability to leverage light for rapid measurements and their superior resistance and complexity to replication compared to other methods. In this study, we proposed a photonic PUF based on an aluminum film structure with randomly positioned nanoholes on a substrate. Light transmission through this structure resulted in scattering owing to localized and propagating surface plasmon resonances. The resulting image was digitized to generate an encryption key. Our tests involved adjusting the filling factor (FF) and pixel size, yielding a high randomness of 49.87% and a high bit density of 1.6 × 107 bits/cm2. The independent bits produced a total of 258 bits, closely matching the actual bit count of 256 bits. Furthermore, applying a Gaussian distribution to the hole sizes, assuming a more realistic scenario, yielded favorable results. This structure is cost-effective owing to the simplicity of its materials, production method, and design. Additionally, its compact size of 40 μm × 40 μm makes it ideal for miniaturization and integration into various applications.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.