Xiaozhe Yang , Chengmin Hu , Yumin Chen , Ziyang Song , Ling Miao , Yaokang Lv , Hui Duan , Mingxian Liu , Lihua Gan
{"title":"定制坚固氮杂质碳纳米粒子的离子可进入孔隙,以实现高容量和长寿命的锌离子存储","authors":"Xiaozhe Yang , Chengmin Hu , Yumin Chen , Ziyang Song , Ling Miao , Yaokang Lv , Hui Duan , Mingxian Liu , Lihua Gan","doi":"10.1016/j.est.2024.114509","DOIUrl":null,"url":null,"abstract":"<div><div>Designing highly endogenous zincophilic sites and ion-accessible pore architectures is crucial but remains a formidable challenge for carbon cathodes in zinc-ion hybrid capacitors (ZHCs) with superior capacity activity and ultralong cycling life. Herein, nitrogen heteroatomic carbon nanoparticles with hierarchical porous architectures were tailor-made by a well-established and efficient Schiff base reaction. The nucleophilic addition of amine modules and reactive carbonyl groups forms ordered organic nanoparticles with the specific internal ring pore size (1.27 nm) and high-level N heteroatomic doping. The tailored internal ring pore size, the robust macroporous networks formed by aggregated and interwoven nanoparticles and controlled carbonization/activation processes collaborate to obtain hierarchical porous architectures, robust carbon skeletons and high specific surface area (SSA) (2504 m<sup>2</sup> g<sup>−1</sup>). Most notably, the pore architectures of NHPCs-700 (∼1.2 nm) can perfectly match the solvated ion diameter of Zn<sup>2+</sup> (0.86 nm) and CF<sub>3</sub>SO<sub>3</sub><sup>−</sup> (1.16 nm), realizing highly accessibility of zincophilic sites and fast diffusion behaviors. Additionally, <em>ex-situ</em> characterization and DFT calculation reveal the following energy storage mechanism: the ultrahigh zinc-ion capturing ability of pyridine N motifs, and fast diffusion behaviors alternately physical uptake of Zn<sup>2+</sup>/CF<sub>3</sub>SO<sub>3</sub><sup>−</sup> charge carriers. The highly endogenous zincophilic sites, ion-accessible pore architectures and dual ion storage mechanism ensure exceptional specific capacity (253 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>), outstanding energy density (157.8 Wh kg<sup>−1</sup> at 125.3 W kg<sup>−1</sup>), and ultralong cycling life (200, 000 cycles at 10 A g<sup>−1</sup>). This work provides a strategic fabrication method for the advanced carbon cathodes with highly endogenous zincophilic site.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring ion-accessible pores of robust nitrogen heteroatomic carbon nanoparticles for high-capacity and long-life Zn-ion storage\",\"authors\":\"Xiaozhe Yang , Chengmin Hu , Yumin Chen , Ziyang Song , Ling Miao , Yaokang Lv , Hui Duan , Mingxian Liu , Lihua Gan\",\"doi\":\"10.1016/j.est.2024.114509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing highly endogenous zincophilic sites and ion-accessible pore architectures is crucial but remains a formidable challenge for carbon cathodes in zinc-ion hybrid capacitors (ZHCs) with superior capacity activity and ultralong cycling life. Herein, nitrogen heteroatomic carbon nanoparticles with hierarchical porous architectures were tailor-made by a well-established and efficient Schiff base reaction. The nucleophilic addition of amine modules and reactive carbonyl groups forms ordered organic nanoparticles with the specific internal ring pore size (1.27 nm) and high-level N heteroatomic doping. The tailored internal ring pore size, the robust macroporous networks formed by aggregated and interwoven nanoparticles and controlled carbonization/activation processes collaborate to obtain hierarchical porous architectures, robust carbon skeletons and high specific surface area (SSA) (2504 m<sup>2</sup> g<sup>−1</sup>). Most notably, the pore architectures of NHPCs-700 (∼1.2 nm) can perfectly match the solvated ion diameter of Zn<sup>2+</sup> (0.86 nm) and CF<sub>3</sub>SO<sub>3</sub><sup>−</sup> (1.16 nm), realizing highly accessibility of zincophilic sites and fast diffusion behaviors. Additionally, <em>ex-situ</em> characterization and DFT calculation reveal the following energy storage mechanism: the ultrahigh zinc-ion capturing ability of pyridine N motifs, and fast diffusion behaviors alternately physical uptake of Zn<sup>2+</sup>/CF<sub>3</sub>SO<sub>3</sub><sup>−</sup> charge carriers. The highly endogenous zincophilic sites, ion-accessible pore architectures and dual ion storage mechanism ensure exceptional specific capacity (253 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>), outstanding energy density (157.8 Wh kg<sup>−1</sup> at 125.3 W kg<sup>−1</sup>), and ultralong cycling life (200, 000 cycles at 10 A g<sup>−1</sup>). This work provides a strategic fabrication method for the advanced carbon cathodes with highly endogenous zincophilic site.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24040957\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24040957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
在锌离子混合电容器(ZHC)中,设计高度亲锌的内源位点和离子可进入的孔隙结构至关重要,但对于具有卓越容量活性和超长循环寿命的碳阴极来说,这仍然是一项艰巨的挑战。在此,我们通过一种成熟高效的希夫碱反应,定制了具有分层多孔结构的氮杂原子碳纳米粒子。胺模块和活性羰基的亲核加成形成了具有特定内环孔径(1.27 nm)和高水平氮杂原子掺杂的有序有机纳米粒子。定制的内环孔径、纳米颗粒聚集和交织形成的坚固大孔网络以及受控的碳化/活化过程共同作用,形成了分层多孔结构、坚固的碳骨架和高比表面积(SSA)(2504 m2 g-1)。最值得注意的是,NHPCs-700 的孔隙结构(1.2 纳米)与 Zn2+(0.86 纳米)和 CF3SO3-(1.16 纳米)的溶解离子直径完全匹配,实现了亲锌位点的高度可及性和快速扩散行为。此外,原位表征和 DFT 计算揭示了以下储能机制:吡啶 N 基序的超高锌离子捕获能力,以及 Zn2+/CF3SO3- 电荷载流子交替物理吸收的快速扩散行为。高度亲锌的内源性位点、离子可进入的孔隙结构和双重离子存储机制确保了卓越的比容量(0.2 A g-1 时为 253 mAh g-1)、出色的能量密度(125.3 W kg-1 时为 157.8 Wh kg-1)和超长的循环寿命(10 A g-1 时为 200,000 次循环)。这项工作为具有高内源性亲锌位点的先进碳阴极提供了一种战略性的制造方法。
Tailoring ion-accessible pores of robust nitrogen heteroatomic carbon nanoparticles for high-capacity and long-life Zn-ion storage
Designing highly endogenous zincophilic sites and ion-accessible pore architectures is crucial but remains a formidable challenge for carbon cathodes in zinc-ion hybrid capacitors (ZHCs) with superior capacity activity and ultralong cycling life. Herein, nitrogen heteroatomic carbon nanoparticles with hierarchical porous architectures were tailor-made by a well-established and efficient Schiff base reaction. The nucleophilic addition of amine modules and reactive carbonyl groups forms ordered organic nanoparticles with the specific internal ring pore size (1.27 nm) and high-level N heteroatomic doping. The tailored internal ring pore size, the robust macroporous networks formed by aggregated and interwoven nanoparticles and controlled carbonization/activation processes collaborate to obtain hierarchical porous architectures, robust carbon skeletons and high specific surface area (SSA) (2504 m2 g−1). Most notably, the pore architectures of NHPCs-700 (∼1.2 nm) can perfectly match the solvated ion diameter of Zn2+ (0.86 nm) and CF3SO3− (1.16 nm), realizing highly accessibility of zincophilic sites and fast diffusion behaviors. Additionally, ex-situ characterization and DFT calculation reveal the following energy storage mechanism: the ultrahigh zinc-ion capturing ability of pyridine N motifs, and fast diffusion behaviors alternately physical uptake of Zn2+/CF3SO3− charge carriers. The highly endogenous zincophilic sites, ion-accessible pore architectures and dual ion storage mechanism ensure exceptional specific capacity (253 mAh g−1 at 0.2 A g−1), outstanding energy density (157.8 Wh kg−1 at 125.3 W kg−1), and ultralong cycling life (200, 000 cycles at 10 A g−1). This work provides a strategic fabrication method for the advanced carbon cathodes with highly endogenous zincophilic site.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.