利用傅立叶变换中红外光谱和传统机器学习算法快速检测骆驼奶中的矿物质含量并进行光谱特征分析

IF 5.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Yongqing Li , Yikai Fan , Jingyi Gao , Li Liu , Lijun Cao , Bo Hu , Zunongjiang Abula , Yeerlan Xieermaola , Haitong Wang , Chu Chu , Zhuo Yang , Guochang Yang , Peipei Wen , Dongwei Wang , Wenxin Zheng , Shujun Zhang
{"title":"利用傅立叶变换中红外光谱和传统机器学习算法快速检测骆驼奶中的矿物质含量并进行光谱特征分析","authors":"Yongqing Li ,&nbsp;Yikai Fan ,&nbsp;Jingyi Gao ,&nbsp;Li Liu ,&nbsp;Lijun Cao ,&nbsp;Bo Hu ,&nbsp;Zunongjiang Abula ,&nbsp;Yeerlan Xieermaola ,&nbsp;Haitong Wang ,&nbsp;Chu Chu ,&nbsp;Zhuo Yang ,&nbsp;Guochang Yang ,&nbsp;Peipei Wen ,&nbsp;Dongwei Wang ,&nbsp;Wenxin Zheng ,&nbsp;Shujun Zhang","doi":"10.1016/j.foodcont.2024.110983","DOIUrl":null,"url":null,"abstract":"<div><div>Camel milk is rich in nutrients and bioactive factors, with mineral content generally higher than that of cow milk, but there is currently no internationally established, rapid, batch-testing method for the mineral content. This study collected samples of camel milk from 113 locations in Xinjiang, China. For the first time internationally, based on the true mineral values determined by ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and the extracted mid-infrared spectra data, a quantitative prediction model for 10 key minerals (Ca, Fe, K, Mg, Mn, Na, P, Sr, Zn, and Se) was established using Fourier-Transform Mid-Infrared Spectroscopy (FT-MIRS) and the traditional machine learning algorithm Partial Least Squares Regression. The R<sub>t</sub><sup>2</sup> of the test set ranged from 0.61 to 0.91, RMSE<sub>t</sub> ranged from 2.21ug/kg(Se) to 197.08 mg/kg(K) and the RPD<sub>t</sub> from 1.59 to 3.28. In addition, the distribution, patterns, and correlations of mineral-related characteristic wavenumbers in camel milk were summarized. This study opens a new avenue for the rapid detection of minerals in camel milk and fills the research gap in in using FT-MIRS to detect mineral content in camel milk.</div></div>","PeriodicalId":319,"journal":{"name":"Food Control","volume":"169 ","pages":"Article 110983"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid detection and spectroscopic feature analysis of mineral content in camel milk using fourier-transform mid-infrared spectroscopy and traditional machine learning algorithms\",\"authors\":\"Yongqing Li ,&nbsp;Yikai Fan ,&nbsp;Jingyi Gao ,&nbsp;Li Liu ,&nbsp;Lijun Cao ,&nbsp;Bo Hu ,&nbsp;Zunongjiang Abula ,&nbsp;Yeerlan Xieermaola ,&nbsp;Haitong Wang ,&nbsp;Chu Chu ,&nbsp;Zhuo Yang ,&nbsp;Guochang Yang ,&nbsp;Peipei Wen ,&nbsp;Dongwei Wang ,&nbsp;Wenxin Zheng ,&nbsp;Shujun Zhang\",\"doi\":\"10.1016/j.foodcont.2024.110983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Camel milk is rich in nutrients and bioactive factors, with mineral content generally higher than that of cow milk, but there is currently no internationally established, rapid, batch-testing method for the mineral content. This study collected samples of camel milk from 113 locations in Xinjiang, China. For the first time internationally, based on the true mineral values determined by ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and the extracted mid-infrared spectra data, a quantitative prediction model for 10 key minerals (Ca, Fe, K, Mg, Mn, Na, P, Sr, Zn, and Se) was established using Fourier-Transform Mid-Infrared Spectroscopy (FT-MIRS) and the traditional machine learning algorithm Partial Least Squares Regression. The R<sub>t</sub><sup>2</sup> of the test set ranged from 0.61 to 0.91, RMSE<sub>t</sub> ranged from 2.21ug/kg(Se) to 197.08 mg/kg(K) and the RPD<sub>t</sub> from 1.59 to 3.28. In addition, the distribution, patterns, and correlations of mineral-related characteristic wavenumbers in camel milk were summarized. This study opens a new avenue for the rapid detection of minerals in camel milk and fills the research gap in in using FT-MIRS to detect mineral content in camel milk.</div></div>\",\"PeriodicalId\":319,\"journal\":{\"name\":\"Food Control\",\"volume\":\"169 \",\"pages\":\"Article 110983\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Control\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095671352400700X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Control","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095671352400700X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

驼奶含有丰富的营养成分和生物活性因子,矿物质含量一般高于牛奶,但目前国际上还没有成熟的矿物质含量快速批量检测方法。本研究从中国新疆的 113 个地点采集了骆驼奶样品。根据 ICP-OES(电感耦合等离子体光学发射光谱)测定的矿物质真实值和提取的中红外光谱数据,利用傅立叶变换中红外光谱(FT-MIRS)和传统的机器学习算法部分最小二乘回归,在国际上首次建立了 10 种关键矿物质(Ca、Fe、K、Mg、Mn、Na、P、Sr、Zn 和 Se)的定量预测模型。测试集的 Rt2 为 0.61 至 0.91,RMSEt 为 2.21ug/kg(Se) 至 197.08 mg/kg(K),RPDt 为 1.59 至 3.28。此外,还总结了骆驼奶中矿物质相关特征波数的分布、模式和相关性。这项研究为快速检测骆驼奶中的矿物质开辟了一条新途径,填补了利用傅立叶变换红外光谱检测骆驼奶中矿物质含量的研究空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid detection and spectroscopic feature analysis of mineral content in camel milk using fourier-transform mid-infrared spectroscopy and traditional machine learning algorithms
Camel milk is rich in nutrients and bioactive factors, with mineral content generally higher than that of cow milk, but there is currently no internationally established, rapid, batch-testing method for the mineral content. This study collected samples of camel milk from 113 locations in Xinjiang, China. For the first time internationally, based on the true mineral values determined by ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and the extracted mid-infrared spectra data, a quantitative prediction model for 10 key minerals (Ca, Fe, K, Mg, Mn, Na, P, Sr, Zn, and Se) was established using Fourier-Transform Mid-Infrared Spectroscopy (FT-MIRS) and the traditional machine learning algorithm Partial Least Squares Regression. The Rt2 of the test set ranged from 0.61 to 0.91, RMSEt ranged from 2.21ug/kg(Se) to 197.08 mg/kg(K) and the RPDt from 1.59 to 3.28. In addition, the distribution, patterns, and correlations of mineral-related characteristic wavenumbers in camel milk were summarized. This study opens a new avenue for the rapid detection of minerals in camel milk and fills the research gap in in using FT-MIRS to detect mineral content in camel milk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Control
Food Control 工程技术-食品科技
CiteScore
12.20
自引率
6.70%
发文量
758
审稿时长
33 days
期刊介绍: Food Control is an international journal that provides essential information for those involved in food safety and process control. Food Control covers the below areas that relate to food process control or to food safety of human foods: • Microbial food safety and antimicrobial systems • Mycotoxins • Hazard analysis, HACCP and food safety objectives • Risk assessment, including microbial and chemical hazards • Quality assurance • Good manufacturing practices • Food process systems design and control • Food Packaging technology and materials in contact with foods • Rapid methods of analysis and detection, including sensor technology • Codes of practice, legislation and international harmonization • Consumer issues • Education, training and research needs. The scope of Food Control is comprehensive and includes original research papers, authoritative reviews, short communications, comment articles that report on new developments in food control, and position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信