San-xi DENG , Jin-feng LI , Li WANG , Yue-yan CHEN , Zheng-wu XIANG , Peng-cheng MA , Yong-lai CHEN , Dan-yang LIU
{"title":"增加预变形的 T8 时效铝-铜-锂合金的强化机制","authors":"San-xi DENG , Jin-feng LI , Li WANG , Yue-yan CHEN , Zheng-wu XIANG , Peng-cheng MA , Yong-lai CHEN , Dan-yang LIU","doi":"10.1016/S1003-6326(24)66599-4","DOIUrl":null,"url":null,"abstract":"<div><div>The microstructure evolution and mechanical properties of a T8-aged Al−Cu−Li alloy with increased pre-deformation (0−15%) were investigated, revealing the microstructure−strength relationship and the intrinsic strengthening mechanism. The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility. Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston (GP) zones and provide more nucleation sites for <em>T</em>1 precipitates. This leads to more intensive and finer <em>T</em>1 precipitates in the samples with higher pre-deformation levels. Simultaneously, the enhanced precipitation of <em>T</em>1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of <em>θ′</em> precipitates. The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from <em>T</em>1 and <em>θ′</em> precipitates decrease with increasing pre-deformation. The reduced diameters of <em>T</em>1 precipitates are primarily responsible for their weakened strengthening effects. Therefore, the improved strength of the T8-aged Al−Cu−Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3151-3169"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strengthening mechanism of T8-aged Al−Cu−Li alloy with increased pre-deformation\",\"authors\":\"San-xi DENG , Jin-feng LI , Li WANG , Yue-yan CHEN , Zheng-wu XIANG , Peng-cheng MA , Yong-lai CHEN , Dan-yang LIU\",\"doi\":\"10.1016/S1003-6326(24)66599-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The microstructure evolution and mechanical properties of a T8-aged Al−Cu−Li alloy with increased pre-deformation (0−15%) were investigated, revealing the microstructure−strength relationship and the intrinsic strengthening mechanism. The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility. Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston (GP) zones and provide more nucleation sites for <em>T</em>1 precipitates. This leads to more intensive and finer <em>T</em>1 precipitates in the samples with higher pre-deformation levels. Simultaneously, the enhanced precipitation of <em>T</em>1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of <em>θ′</em> precipitates. The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from <em>T</em>1 and <em>θ′</em> precipitates decrease with increasing pre-deformation. The reduced diameters of <em>T</em>1 precipitates are primarily responsible for their weakened strengthening effects. Therefore, the improved strength of the T8-aged Al−Cu−Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels.</div></div>\",\"PeriodicalId\":23191,\"journal\":{\"name\":\"Transactions of Nonferrous Metals Society of China\",\"volume\":\"34 10\",\"pages\":\"Pages 3151-3169\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Nonferrous Metals Society of China\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1003632624665994\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665994","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Strengthening mechanism of T8-aged Al−Cu−Li alloy with increased pre-deformation
The microstructure evolution and mechanical properties of a T8-aged Al−Cu−Li alloy with increased pre-deformation (0−15%) were investigated, revealing the microstructure−strength relationship and the intrinsic strengthening mechanism. The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility. Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston (GP) zones and provide more nucleation sites for T1 precipitates. This leads to more intensive and finer T1 precipitates in the samples with higher pre-deformation levels. Simultaneously, the enhanced precipitation of T1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of θ′ precipitates. The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from T1 and θ′ precipitates decrease with increasing pre-deformation. The reduced diameters of T1 precipitates are primarily responsible for their weakened strengthening effects. Therefore, the improved strength of the T8-aged Al−Cu−Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.