{"title":"微注塑聚甲醛(POM)的分子量、机械性能和形态之间的关系","authors":"","doi":"10.1016/j.polymertesting.2024.108626","DOIUrl":null,"url":null,"abstract":"<div><div>Polyoxymethylene (POM) is a fast crystallizing polymer, whose structure is highly dependent on the processing conditions and is showing a broad range of mechanical properties. Three POM materials with different molecular weights were selected and a design of experiments (DoE) was performed varying melt temperature, mold temperature, and injection speed. In combination with increased viscosity at higher molecular weights, the flow resistance and shear stresses will also increase at a certain injection speed and geometric conditions. Thereby, the range of morphological differences depends not only on the process boundary conditions but also on the rheological conditions. This aspect is particularly relevant for micro-injection molded parts, as the acting cooling and shearing rates are much higher than in standard injection molding. A specially designed tensile rod with a radially symmetric cross section was utilized for the experiments, which offers advantages in terms of a symmetric flow and cooling behavior. The morphology was studied with thin sections from the center of the sample. Differential Scanning Calorimetry (DSC) was used to study the crystallinity of the samples and the mechanical properties were determined by a tensile test using an adopted optical extensometer. The mechanical properties of low molecular weight POM are only to a minor extent affected by the process variations. However, higher molecular weight POM is greatly affected in terms of its skin layer formation and improved mechanical properties favored by a low injection velocity.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlations between molecular weight, mechanical properties and morphology of micro-injection molded polyoxymethylene (POM)\",\"authors\":\"\",\"doi\":\"10.1016/j.polymertesting.2024.108626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyoxymethylene (POM) is a fast crystallizing polymer, whose structure is highly dependent on the processing conditions and is showing a broad range of mechanical properties. Three POM materials with different molecular weights were selected and a design of experiments (DoE) was performed varying melt temperature, mold temperature, and injection speed. In combination with increased viscosity at higher molecular weights, the flow resistance and shear stresses will also increase at a certain injection speed and geometric conditions. Thereby, the range of morphological differences depends not only on the process boundary conditions but also on the rheological conditions. This aspect is particularly relevant for micro-injection molded parts, as the acting cooling and shearing rates are much higher than in standard injection molding. A specially designed tensile rod with a radially symmetric cross section was utilized for the experiments, which offers advantages in terms of a symmetric flow and cooling behavior. The morphology was studied with thin sections from the center of the sample. Differential Scanning Calorimetry (DSC) was used to study the crystallinity of the samples and the mechanical properties were determined by a tensile test using an adopted optical extensometer. The mechanical properties of low molecular weight POM are only to a minor extent affected by the process variations. However, higher molecular weight POM is greatly affected in terms of its skin layer formation and improved mechanical properties favored by a low injection velocity.</div></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824003039\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824003039","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Correlations between molecular weight, mechanical properties and morphology of micro-injection molded polyoxymethylene (POM)
Polyoxymethylene (POM) is a fast crystallizing polymer, whose structure is highly dependent on the processing conditions and is showing a broad range of mechanical properties. Three POM materials with different molecular weights were selected and a design of experiments (DoE) was performed varying melt temperature, mold temperature, and injection speed. In combination with increased viscosity at higher molecular weights, the flow resistance and shear stresses will also increase at a certain injection speed and geometric conditions. Thereby, the range of morphological differences depends not only on the process boundary conditions but also on the rheological conditions. This aspect is particularly relevant for micro-injection molded parts, as the acting cooling and shearing rates are much higher than in standard injection molding. A specially designed tensile rod with a radially symmetric cross section was utilized for the experiments, which offers advantages in terms of a symmetric flow and cooling behavior. The morphology was studied with thin sections from the center of the sample. Differential Scanning Calorimetry (DSC) was used to study the crystallinity of the samples and the mechanical properties were determined by a tensile test using an adopted optical extensometer. The mechanical properties of low molecular weight POM are only to a minor extent affected by the process variations. However, higher molecular weight POM is greatly affected in terms of its skin layer formation and improved mechanical properties favored by a low injection velocity.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.