利用弹性离散元件模型模拟人工土壤与叶片之间的内聚摩擦相互作用,该模型的内聚力取决于应力

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Mohamed A.A. Abdeldayem , Mehari Z. Tekeste
{"title":"利用弹性离散元件模型模拟人工土壤与叶片之间的内聚摩擦相互作用,该模型的内聚力取决于应力","authors":"Mohamed A.A. Abdeldayem ,&nbsp;Mehari Z. Tekeste","doi":"10.1016/j.jterra.2024.101029","DOIUrl":null,"url":null,"abstract":"<div><div>The discrete element method (DEM) has become a valuable computational technique for simulating soil dynamic loading during bulldozer cutting processes. It allows for the virtual design of Ground Engaging Tools (GETs) and predicting energy expenditure during earthmoving operations. Few studies exist for modeling dynamic soil-cutting processes of soils exhibiting elasto-plastic behavior with stress-history-dependent cohesive soil behavior. The study aimed to calibrate an elasto-plastic DEM soil model, with cohesion, for a cohesive-frictional artificial soil and predict soil reaction forces from soil-to-blade interaction. Plackett-Burman screening design of experiment (DOE) and inverse profiling techniques were applied to calibrate the elasto-plastic DEM soil model, with cohesion, predicting soil compaction energy with a percent relative error (PRE) of 3 % and maximum normal stress (PRE of 1 %) using cohesive-frictional artificial soil in a uniaxial confined compression test. Validation of the calibrated DEM soil model resulted in good prediction of soil reaction forces versus blade displacement for a narrow planar blade, a wide planer blade, and a geometrically scaled curved bulldozer blade, with RMSE values of 2.04 N, 14.89 N, and 7.42 N, respectively. The findings showed that elasto-plastic soil behavior with stress-dependent cohesion can be modeled using DEM for simulating the cutting and moving of earthen materials, offering valuable insights for optimizing GET design and development of digital twins of earthmoving operations.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101029"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of cohesive-frictional artificial soil-to-blade interactions using an elasto-plastic discrete element model with stress-dependent cohesion\",\"authors\":\"Mohamed A.A. Abdeldayem ,&nbsp;Mehari Z. Tekeste\",\"doi\":\"10.1016/j.jterra.2024.101029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The discrete element method (DEM) has become a valuable computational technique for simulating soil dynamic loading during bulldozer cutting processes. It allows for the virtual design of Ground Engaging Tools (GETs) and predicting energy expenditure during earthmoving operations. Few studies exist for modeling dynamic soil-cutting processes of soils exhibiting elasto-plastic behavior with stress-history-dependent cohesive soil behavior. The study aimed to calibrate an elasto-plastic DEM soil model, with cohesion, for a cohesive-frictional artificial soil and predict soil reaction forces from soil-to-blade interaction. Plackett-Burman screening design of experiment (DOE) and inverse profiling techniques were applied to calibrate the elasto-plastic DEM soil model, with cohesion, predicting soil compaction energy with a percent relative error (PRE) of 3 % and maximum normal stress (PRE of 1 %) using cohesive-frictional artificial soil in a uniaxial confined compression test. Validation of the calibrated DEM soil model resulted in good prediction of soil reaction forces versus blade displacement for a narrow planar blade, a wide planer blade, and a geometrically scaled curved bulldozer blade, with RMSE values of 2.04 N, 14.89 N, and 7.42 N, respectively. The findings showed that elasto-plastic soil behavior with stress-dependent cohesion can be modeled using DEM for simulating the cutting and moving of earthen materials, offering valuable insights for optimizing GET design and development of digital twins of earthmoving operations.</div></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"117 \",\"pages\":\"Article 101029\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489824000715\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000715","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

离散元素法(DEM)已成为模拟推土机切割过程中土壤动态载荷的重要计算技术。它可以虚拟设计地面掘进工具 (GET),并预测推土作业过程中的能量消耗。针对具有弹塑性行为和应力历史依赖性粘性土壤行为的土壤动态切削过程建模的研究很少。本研究旨在校准具有内聚力的弹塑性 DEM 土壤模型,用于内聚摩擦人造土壤,并预测土壤与刀片相互作用产生的土壤反作用力。应用 Plackett-Burman 筛选实验设计(DOE)和反剖面技术校准了具有内聚力的弹塑性 DEM 土壤模型,在单轴约束压缩试验中使用内聚摩擦人造土壤预测土壤压实能,相对误差百分比(PRE)为 3%,最大法向应力(PRE 为 1%)为 1%。对校准的 DEM 土壤模型进行验证后,可以很好地预测窄平面叶片、宽平面叶片和几何比例弯曲推土机叶片的土壤反力与叶片位移的关系,RMSE 值分别为 2.04 N、14.89 N 和 7.42 N。研究结果表明,可以使用 DEM 模拟土质材料的切割和移动,对具有应力相关内聚力的弹塑性土壤行为进行建模,从而为优化 GET 设计和开发土方工程数字孪生模型提供宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of cohesive-frictional artificial soil-to-blade interactions using an elasto-plastic discrete element model with stress-dependent cohesion
The discrete element method (DEM) has become a valuable computational technique for simulating soil dynamic loading during bulldozer cutting processes. It allows for the virtual design of Ground Engaging Tools (GETs) and predicting energy expenditure during earthmoving operations. Few studies exist for modeling dynamic soil-cutting processes of soils exhibiting elasto-plastic behavior with stress-history-dependent cohesive soil behavior. The study aimed to calibrate an elasto-plastic DEM soil model, with cohesion, for a cohesive-frictional artificial soil and predict soil reaction forces from soil-to-blade interaction. Plackett-Burman screening design of experiment (DOE) and inverse profiling techniques were applied to calibrate the elasto-plastic DEM soil model, with cohesion, predicting soil compaction energy with a percent relative error (PRE) of 3 % and maximum normal stress (PRE of 1 %) using cohesive-frictional artificial soil in a uniaxial confined compression test. Validation of the calibrated DEM soil model resulted in good prediction of soil reaction forces versus blade displacement for a narrow planar blade, a wide planer blade, and a geometrically scaled curved bulldozer blade, with RMSE values of 2.04 N, 14.89 N, and 7.42 N, respectively. The findings showed that elasto-plastic soil behavior with stress-dependent cohesion can be modeled using DEM for simulating the cutting and moving of earthen materials, offering valuable insights for optimizing GET design and development of digital twins of earthmoving operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信