基于 AIS 数据的交通区矩阵评估马六甲海峡的交通复杂性

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Dapei Liu , Zihao Liu , Hooi-Siang Kang , Chee-Loon Siow , C. Guedes Soares
{"title":"基于 AIS 数据的交通区矩阵评估马六甲海峡的交通复杂性","authors":"Dapei Liu ,&nbsp;Zihao Liu ,&nbsp;Hooi-Siang Kang ,&nbsp;Chee-Loon Siow ,&nbsp;C. Guedes Soares","doi":"10.1016/j.oceaneng.2024.119687","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel and feasible framework for assessing maritime traffic complexity, utilising historical Automatic Identification System data to extract dynamic traffic characteristics of sea waters and quantify the corresponding maritime traffic complexity. The processed historical statistics are initially segmented into subsets according to different geographic traffic cells based on traffic zones. Subsequently, a Radial Basis Function regression model with a Gaussian kernel is employed to extract dynamic traffic parameters at the central coordinates of each geographic traffic zone based on subsets. The dynamic parameters derived from nonlinear regression and complexity sub-models are ultimately applied in maritime traffic complexity identification. The effectiveness of the proposed framework is validated through complexity assessments in selected areas of Malacca Strait. Empirical results are significant for maritime shipping research on data-driven traffic complexity monitoring and digitalised decision support.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"314 ","pages":"Article 119687"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic complexity assessment on the malacca strait with traffic zone matrix based on AIS data\",\"authors\":\"Dapei Liu ,&nbsp;Zihao Liu ,&nbsp;Hooi-Siang Kang ,&nbsp;Chee-Loon Siow ,&nbsp;C. Guedes Soares\",\"doi\":\"10.1016/j.oceaneng.2024.119687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a novel and feasible framework for assessing maritime traffic complexity, utilising historical Automatic Identification System data to extract dynamic traffic characteristics of sea waters and quantify the corresponding maritime traffic complexity. The processed historical statistics are initially segmented into subsets according to different geographic traffic cells based on traffic zones. Subsequently, a Radial Basis Function regression model with a Gaussian kernel is employed to extract dynamic traffic parameters at the central coordinates of each geographic traffic zone based on subsets. The dynamic parameters derived from nonlinear regression and complexity sub-models are ultimately applied in maritime traffic complexity identification. The effectiveness of the proposed framework is validated through complexity assessments in selected areas of Malacca Strait. Empirical results are significant for maritime shipping research on data-driven traffic complexity monitoring and digitalised decision support.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"314 \",\"pages\":\"Article 119687\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801824030257\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801824030257","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个新颖可行的海上交通复杂性评估框架,利用自动识别系统的历史数据来提取海域的动态交通特征,并量化相应的海上交通复杂性。经过处理的历史统计数据首先根据不同的地理交通单元按交通区域划分为若干子集。随后,采用带有高斯核的径向基函数回归模型,根据子集提取每个地理交通区中心坐标处的动态交通参数。从非线性回归和复杂性子模型中得出的动态参数最终被应用于海洋交通复杂性识别。通过对马六甲海峡选定区域的复杂性评估,验证了所提框架的有效性。实证结果对数据驱动的交通复杂性监控和数字化决策支持方面的海运研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic complexity assessment on the malacca strait with traffic zone matrix based on AIS data
This study proposes a novel and feasible framework for assessing maritime traffic complexity, utilising historical Automatic Identification System data to extract dynamic traffic characteristics of sea waters and quantify the corresponding maritime traffic complexity. The processed historical statistics are initially segmented into subsets according to different geographic traffic cells based on traffic zones. Subsequently, a Radial Basis Function regression model with a Gaussian kernel is employed to extract dynamic traffic parameters at the central coordinates of each geographic traffic zone based on subsets. The dynamic parameters derived from nonlinear regression and complexity sub-models are ultimately applied in maritime traffic complexity identification. The effectiveness of the proposed framework is validated through complexity assessments in selected areas of Malacca Strait. Empirical results are significant for maritime shipping research on data-driven traffic complexity monitoring and digitalised decision support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信