具有保护意识和环境波动的 HCV 传播模型的静态分布与消亡

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Liangwei Wang , Fengying Wei , Zhen Jin , Xuerong Mao
{"title":"具有保护意识和环境波动的 HCV 传播模型的静态分布与消亡","authors":"Liangwei Wang ,&nbsp;Fengying Wei ,&nbsp;Zhen Jin ,&nbsp;Xuerong Mao","doi":"10.1016/j.aml.2024.109356","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a stochastic HCV model with protection awareness and exposed-acute-chronic phases in this study. First of all, we show that the stochastic HCV model admits a unique global positive solution for any given positive initial values. Then, we verify that HCV model has a unique stationary distribution under the sufficient criterion <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span>, which indicates that HCV transmission undergoes the persistence in the long term. Furthermore, we derive the sufficient conditions for HCV extinction under the condition <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span>. As a consequence, we derive the relationships among the stochastic persistence index <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, the stochastic extinction index <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup></math></span> and the threshold (the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) of the model without fluctuations. The condition <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span> reveals that the existence of the white noises triggers the less stochastic persistence index. While, the condition <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span> reveals that, when the intensities of the white noises are enhanced, the value <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup></math></span> triggers the stochastic extinction.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109356"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary distribution and extinction of an HCV transmission model with protection awareness and environmental fluctuations\",\"authors\":\"Liangwei Wang ,&nbsp;Fengying Wei ,&nbsp;Zhen Jin ,&nbsp;Xuerong Mao\",\"doi\":\"10.1016/j.aml.2024.109356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a stochastic HCV model with protection awareness and exposed-acute-chronic phases in this study. First of all, we show that the stochastic HCV model admits a unique global positive solution for any given positive initial values. Then, we verify that HCV model has a unique stationary distribution under the sufficient criterion <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span>, which indicates that HCV transmission undergoes the persistence in the long term. Furthermore, we derive the sufficient conditions for HCV extinction under the condition <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span>. As a consequence, we derive the relationships among the stochastic persistence index <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, the stochastic extinction index <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup></math></span> and the threshold (the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) of the model without fluctuations. The condition <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span> reveals that the existence of the white noises triggers the less stochastic persistence index. While, the condition <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span> reveals that, when the intensities of the white noises are enhanced, the value <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup></math></span> triggers the stochastic extinction.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109356\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003768\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003768","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种具有保护意识和暴露-急性-慢性阶段的随机 HCV 模型。首先,我们证明了对于任何给定的正初始值,随机 HCV 模型都有唯一的全局正解。然后,我们验证了 HCV 模型在充分条件 R0s>1 下具有唯一的静态分布,这表明 HCV 传播具有长期持续性。因此,我们得出了无波动模型的随机持续指数 R0s、随机灭绝指数 R0e 和阈值(基本繁殖数 R0)之间的关系。R0>R0s>1条件表明,白噪声的存在会导致随机持久性指数降低。而 R0<R0e<1 条件则表明,当白噪声强度增强时,R0e 值会引发随机消亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stationary distribution and extinction of an HCV transmission model with protection awareness and environmental fluctuations
We propose a stochastic HCV model with protection awareness and exposed-acute-chronic phases in this study. First of all, we show that the stochastic HCV model admits a unique global positive solution for any given positive initial values. Then, we verify that HCV model has a unique stationary distribution under the sufficient criterion R0s>1, which indicates that HCV transmission undergoes the persistence in the long term. Furthermore, we derive the sufficient conditions for HCV extinction under the condition R0e<1. As a consequence, we derive the relationships among the stochastic persistence index R0s, the stochastic extinction index R0e and the threshold (the basic reproduction number R0) of the model without fluctuations. The condition R0>R0s>1 reveals that the existence of the white noises triggers the less stochastic persistence index. While, the condition R0<R0e<1 reveals that, when the intensities of the white noises are enhanced, the value R0e triggers the stochastic extinction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信