Liangwei Wang , Fengying Wei , Zhen Jin , Xuerong Mao
{"title":"具有保护意识和环境波动的 HCV 传播模型的静态分布与消亡","authors":"Liangwei Wang , Fengying Wei , Zhen Jin , Xuerong Mao","doi":"10.1016/j.aml.2024.109356","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a stochastic HCV model with protection awareness and exposed-acute-chronic phases in this study. First of all, we show that the stochastic HCV model admits a unique global positive solution for any given positive initial values. Then, we verify that HCV model has a unique stationary distribution under the sufficient criterion <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span>, which indicates that HCV transmission undergoes the persistence in the long term. Furthermore, we derive the sufficient conditions for HCV extinction under the condition <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span>. As a consequence, we derive the relationships among the stochastic persistence index <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, the stochastic extinction index <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup></math></span> and the threshold (the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) of the model without fluctuations. The condition <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span> reveals that the existence of the white noises triggers the less stochastic persistence index. While, the condition <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span> reveals that, when the intensities of the white noises are enhanced, the value <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup></math></span> triggers the stochastic extinction.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109356"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary distribution and extinction of an HCV transmission model with protection awareness and environmental fluctuations\",\"authors\":\"Liangwei Wang , Fengying Wei , Zhen Jin , Xuerong Mao\",\"doi\":\"10.1016/j.aml.2024.109356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a stochastic HCV model with protection awareness and exposed-acute-chronic phases in this study. First of all, we show that the stochastic HCV model admits a unique global positive solution for any given positive initial values. Then, we verify that HCV model has a unique stationary distribution under the sufficient criterion <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span>, which indicates that HCV transmission undergoes the persistence in the long term. Furthermore, we derive the sufficient conditions for HCV extinction under the condition <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span>. As a consequence, we derive the relationships among the stochastic persistence index <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup></math></span>, the stochastic extinction index <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup></math></span> and the threshold (the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) of the model without fluctuations. The condition <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>></mo><mn>1</mn></mrow></math></span> reveals that the existence of the white noises triggers the less stochastic persistence index. While, the condition <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo><</mo><mn>1</mn></mrow></math></span> reveals that, when the intensities of the white noises are enhanced, the value <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup></math></span> triggers the stochastic extinction.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109356\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003768\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003768","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stationary distribution and extinction of an HCV transmission model with protection awareness and environmental fluctuations
We propose a stochastic HCV model with protection awareness and exposed-acute-chronic phases in this study. First of all, we show that the stochastic HCV model admits a unique global positive solution for any given positive initial values. Then, we verify that HCV model has a unique stationary distribution under the sufficient criterion , which indicates that HCV transmission undergoes the persistence in the long term. Furthermore, we derive the sufficient conditions for HCV extinction under the condition . As a consequence, we derive the relationships among the stochastic persistence index , the stochastic extinction index and the threshold (the basic reproduction number ) of the model without fluctuations. The condition reveals that the existence of the white noises triggers the less stochastic persistence index. While, the condition reveals that, when the intensities of the white noises are enhanced, the value triggers the stochastic extinction.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.