Gisoo Daviran , S. M. Ali Seyed Mahmoud , Surya R. Kalidindi , Amir Poursaee
{"title":"模拟混凝土孔隙溶液中热机械处理钢材各种微结构被动层形成动力学研究","authors":"Gisoo Daviran , S. M. Ali Seyed Mahmoud , Surya R. Kalidindi , Amir Poursaee","doi":"10.1016/j.mtla.2024.102277","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon steel bars are critical in steel-reinforced concrete structures, and their corrosion can lead to significant deterioration. This research explored the passive layer formation on different carbon steel microstructures using a high throughput approach. Thermomechanically treated steel bars with three distinct microstructures, i.e., martensite in the outer layer, bainite in the middle, and pearlite in the center, were vertically cut and immersed in the simulated concrete pore solution. Scanning electrochemical microscopy was employed to study the formation of the passive layer, the kinetics of the passivation, and the effective rate constant of the species inside the solution on each microstructure. Results showed that the formation of the passive layer is a time-dependent process, and passivation was influenced by the local microstructure. Martensite demonstrated superior passivation behavior compared to pearlite and bainite.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102277"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of kinetics of passive layer formation on various microstructures in thermo-mechanically treated steel in simulated concrete pore solution\",\"authors\":\"Gisoo Daviran , S. M. Ali Seyed Mahmoud , Surya R. Kalidindi , Amir Poursaee\",\"doi\":\"10.1016/j.mtla.2024.102277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon steel bars are critical in steel-reinforced concrete structures, and their corrosion can lead to significant deterioration. This research explored the passive layer formation on different carbon steel microstructures using a high throughput approach. Thermomechanically treated steel bars with three distinct microstructures, i.e., martensite in the outer layer, bainite in the middle, and pearlite in the center, were vertically cut and immersed in the simulated concrete pore solution. Scanning electrochemical microscopy was employed to study the formation of the passive layer, the kinetics of the passivation, and the effective rate constant of the species inside the solution on each microstructure. Results showed that the formation of the passive layer is a time-dependent process, and passivation was influenced by the local microstructure. Martensite demonstrated superior passivation behavior compared to pearlite and bainite.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"38 \",\"pages\":\"Article 102277\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of kinetics of passive layer formation on various microstructures in thermo-mechanically treated steel in simulated concrete pore solution
Carbon steel bars are critical in steel-reinforced concrete structures, and their corrosion can lead to significant deterioration. This research explored the passive layer formation on different carbon steel microstructures using a high throughput approach. Thermomechanically treated steel bars with three distinct microstructures, i.e., martensite in the outer layer, bainite in the middle, and pearlite in the center, were vertically cut and immersed in the simulated concrete pore solution. Scanning electrochemical microscopy was employed to study the formation of the passive layer, the kinetics of the passivation, and the effective rate constant of the species inside the solution on each microstructure. Results showed that the formation of the passive layer is a time-dependent process, and passivation was influenced by the local microstructure. Martensite demonstrated superior passivation behavior compared to pearlite and bainite.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).