平面三角形中的循环计数

IF 1.2 1区 数学 Q1 MATHEMATICS
On-Hei Solomon Lo , Carol T. Zamfirescu
{"title":"平面三角形中的循环计数","authors":"On-Hei Solomon Lo ,&nbsp;Carol T. Zamfirescu","doi":"10.1016/j.jctb.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the minimum number of cycles of specified lengths in planar <em>n</em>-vertex triangulations <em>G</em>. We prove that this number is <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for any cycle length at most <span><math><mn>3</mn><mo>+</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mrow><mi>rad</mi></mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>,</mo><mo>⌈</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><msub><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⁡</mo><mn>2</mn></mrow></msup><mo>⌉</mo><mo>}</mo></math></span>, where <span><math><mrow><mi>rad</mi></mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> denotes the radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian <em>n</em>-vertex triangulations containing <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> many <em>k</em>-cycles for any <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mo>⌈</mo><mi>n</mi><mo>−</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>5</mn></mrow></mroot><mo>⌉</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. Furthermore, we prove that planar 4-connected <em>n</em>-vertex triangulations contain <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> many <em>k</em>-cycles for every <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, and that, under certain additional conditions, they contain <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> <em>k</em>-cycles for many values of <em>k</em>, including <em>n</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting cycles in planar triangulations\",\"authors\":\"On-Hei Solomon Lo ,&nbsp;Carol T. Zamfirescu\",\"doi\":\"10.1016/j.jctb.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the minimum number of cycles of specified lengths in planar <em>n</em>-vertex triangulations <em>G</em>. We prove that this number is <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for any cycle length at most <span><math><mn>3</mn><mo>+</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mrow><mi>rad</mi></mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>,</mo><mo>⌈</mo><msup><mrow><mo>(</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><msub><mrow><mi>log</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>⁡</mo><mn>2</mn></mrow></msup><mo>⌉</mo><mo>}</mo></math></span>, where <span><math><mrow><mi>rad</mi></mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> denotes the radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian <em>n</em>-vertex triangulations containing <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> many <em>k</em>-cycles for any <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mo>⌈</mo><mi>n</mi><mo>−</mo><mroot><mrow><mi>n</mi></mrow><mrow><mn>5</mn></mrow></mroot><mo>⌉</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. Furthermore, we prove that planar 4-connected <em>n</em>-vertex triangulations contain <span><math><mi>Ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> many <em>k</em>-cycles for every <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>, and that, under certain additional conditions, they contain <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> <em>k</em>-cycles for many values of <em>k</em>, including <em>n</em>.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000856\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000856","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了平面 n 顶点三角剖分 G 中指定长度循环的最小数目。我们证明,对于循环长度最多为 3+max{rad(G⁎),⌈(n-32)log32⌉} 的任意循环,该数目为 Ω(n),其中 rad(G⁎) 表示三角剖分的对偶半径,它至少是对数,但可以是三角剖分顺序的线性。我们还证明,对于任意 k∈{⌈n-n5⌉,...,n},存在包含 O(n) 个 k 循环的平面哈密顿 n 顶点三角剖分。此外,我们还证明了平面四连 n 顶点三角形在任何 k∈{3,...,n} 条件下都包含 Ω(n) 个 k 循环,而且在某些附加条件下,它们在包括 n 在内的许多 k 值上都包含 Ω(n2) 个 k 循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting cycles in planar triangulations
We investigate the minimum number of cycles of specified lengths in planar n-vertex triangulations G. We prove that this number is Ω(n) for any cycle length at most 3+max{rad(G),(n32)log32}, where rad(G) denotes the radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian n-vertex triangulations containing O(n) many k-cycles for any k{nn5,,n}. Furthermore, we prove that planar 4-connected n-vertex triangulations contain Ω(n) many k-cycles for every k{3,,n}, and that, under certain additional conditions, they contain Ω(n2) k-cycles for many values of k, including n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信