乙烯分解产生的碳粉结构特征对粉末爆炸影响的研究

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Yao Chen , Zhichen Zhang , Yunfeng Zhu , Yahui Li , Shoutao Ma , Haowen Chen , Jie Jiang , Bing Sun , Wei Xu
{"title":"乙烯分解产生的碳粉结构特征对粉末爆炸影响的研究","authors":"Yao Chen ,&nbsp;Zhichen Zhang ,&nbsp;Yunfeng Zhu ,&nbsp;Yahui Li ,&nbsp;Shoutao Ma ,&nbsp;Haowen Chen ,&nbsp;Jie Jiang ,&nbsp;Bing Sun ,&nbsp;Wei Xu","doi":"10.1016/j.tca.2024.179895","DOIUrl":null,"url":null,"abstract":"<div><div>In LDPE production, ethylene underwent polymerization under high temperature and pressure. However, the heat generated during polymerization could cause ethylene pyrolysis, leading to safety risks. More critically, the carbon powder produced could further decompose, posing additional hazards. This study examined the pyrolysis characteristics of high-pressure, high-temperature ethylene and the explosive behavior of the resulting carbon powder. The decomposition of ethylene was carried out under 80–200 °C and 80–200 MPa with the oxygen concentration of 1000–5000 ppm using ethylene explosive device, and the explosive testing of derived carbon powder was carried out in a 20 L sphere chamber under the powder concentration of 200 g/m<sup>3</sup>. It was found that higher initial ignition pressure, temperature, and oxygen concentration intensified ethylene pyrolysis. The size of resulting carbon powder ranged from 0.5 to 500 μm and fewer structural defects, leading to stronger explosive intensity due to a larger specific surface area and longer suspension time in the air. Conversely, carbon powder with larger particle sizes and more defects tended to agglomerate, reducing suspension time and explosion intensity. This research provided a theoretical foundation for understanding powder explosions caused by ethylene decomposition.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the effect of carbon powder structural characteristics derived from ethylene decomposition on powder explosion\",\"authors\":\"Yao Chen ,&nbsp;Zhichen Zhang ,&nbsp;Yunfeng Zhu ,&nbsp;Yahui Li ,&nbsp;Shoutao Ma ,&nbsp;Haowen Chen ,&nbsp;Jie Jiang ,&nbsp;Bing Sun ,&nbsp;Wei Xu\",\"doi\":\"10.1016/j.tca.2024.179895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In LDPE production, ethylene underwent polymerization under high temperature and pressure. However, the heat generated during polymerization could cause ethylene pyrolysis, leading to safety risks. More critically, the carbon powder produced could further decompose, posing additional hazards. This study examined the pyrolysis characteristics of high-pressure, high-temperature ethylene and the explosive behavior of the resulting carbon powder. The decomposition of ethylene was carried out under 80–200 °C and 80–200 MPa with the oxygen concentration of 1000–5000 ppm using ethylene explosive device, and the explosive testing of derived carbon powder was carried out in a 20 L sphere chamber under the powder concentration of 200 g/m<sup>3</sup>. It was found that higher initial ignition pressure, temperature, and oxygen concentration intensified ethylene pyrolysis. The size of resulting carbon powder ranged from 0.5 to 500 μm and fewer structural defects, leading to stronger explosive intensity due to a larger specific surface area and longer suspension time in the air. Conversely, carbon powder with larger particle sizes and more defects tended to agglomerate, reducing suspension time and explosion intensity. This research provided a theoretical foundation for understanding powder explosions caused by ethylene decomposition.</div></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004060312400234X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004060312400234X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在低密度聚乙烯生产过程中,乙烯在高温高压下进行聚合。然而,聚合过程中产生的热量会导致乙烯热解,从而引发安全风险。更重要的是,产生的碳粉可能会进一步分解,带来更多危险。本研究考察了高压高温乙烯的热解特性以及由此产生的碳粉的爆炸行为。使用乙烯爆炸装置在 80-200 ℃、80-200 MPa、氧气浓度为 1000-5000 ppm 的条件下对乙烯进行了分解,并在粉末浓度为 200 g/m3 的 20 L 球形室内对衍生碳粉进行了爆炸试验。结果发现,较高的初始点火压力、温度和氧气浓度会加剧乙烯热解。生成的碳粉粒度在 0.5 至 500 μm 之间,结构缺陷较少,由于比表面积较大,在空气中的悬浮时间较长,因此爆炸强度较强。相反,粒度较大、缺陷较多的碳粉往往会结块,从而缩短悬浮时间,降低爆炸强度。这项研究为理解乙烯分解引起的粉末爆炸提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on the effect of carbon powder structural characteristics derived from ethylene decomposition on powder explosion
In LDPE production, ethylene underwent polymerization under high temperature and pressure. However, the heat generated during polymerization could cause ethylene pyrolysis, leading to safety risks. More critically, the carbon powder produced could further decompose, posing additional hazards. This study examined the pyrolysis characteristics of high-pressure, high-temperature ethylene and the explosive behavior of the resulting carbon powder. The decomposition of ethylene was carried out under 80–200 °C and 80–200 MPa with the oxygen concentration of 1000–5000 ppm using ethylene explosive device, and the explosive testing of derived carbon powder was carried out in a 20 L sphere chamber under the powder concentration of 200 g/m3. It was found that higher initial ignition pressure, temperature, and oxygen concentration intensified ethylene pyrolysis. The size of resulting carbon powder ranged from 0.5 to 500 μm and fewer structural defects, leading to stronger explosive intensity due to a larger specific surface area and longer suspension time in the air. Conversely, carbon powder with larger particle sizes and more defects tended to agglomerate, reducing suspension time and explosion intensity. This research provided a theoretical foundation for understanding powder explosions caused by ethylene decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermochimica Acta
Thermochimica Acta 化学-分析化学
CiteScore
6.50
自引率
8.60%
发文量
210
审稿时长
40 days
期刊介绍: Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application. The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta. The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas: - New and improved instrumentation and methods - Thermal properties and behavior of materials - Kinetics of thermally stimulated processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信