Siyue Zhang , Lin Zhu , Zheng Ai , Baoli Wang , Ahmad Mansoor , Yan Zhang , Wei Sun
{"title":"氧化锆和镍修饰碳纳米管复合材料作为双功能水电解催化剂的应用","authors":"Siyue Zhang , Lin Zhu , Zheng Ai , Baoli Wang , Ahmad Mansoor , Yan Zhang , Wei Sun","doi":"10.1016/j.diamond.2024.111731","DOIUrl":null,"url":null,"abstract":"<div><div>By using carbon nanotube (CNT) as the carrier, Ni as the active center and ZrO<sub>2</sub> as the modifier, an efficient electrocatalytic material (ZrO<sub>2</sub>-Ni/CNT) is designed and synthesized in this paper. The structure and properties of the catalyst are characterized by various instrumental analysis methods such as SEM, TEM, XRD and XPS. The electrochemical test results show that the addition of ZrO<sub>2</sub> can significantly improve the catalytic performance of this catalyst in the electrochemical water splitting. In an alkaline solution, ZrO<sub>2</sub>-Ni/CNT catalyst displays an exceedingly low overpotential of 169 mV and 249 mV at the current density of 10 mA cm<sup>−2</sup> towards hydrogen evolution reaction and oxygen evolution reaction, respectively. This work shows that the modification of ZrO<sub>2</sub> can improve the electrocatalytic activity of Ni-based materials, and the modification strategy can be applied to improve the electrocatalytic activity of commercial Ni-based electrode materials.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111731"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of ZrO2 and Ni modified carbon nanotube composites as bifunctional water electrolysis catalysts\",\"authors\":\"Siyue Zhang , Lin Zhu , Zheng Ai , Baoli Wang , Ahmad Mansoor , Yan Zhang , Wei Sun\",\"doi\":\"10.1016/j.diamond.2024.111731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By using carbon nanotube (CNT) as the carrier, Ni as the active center and ZrO<sub>2</sub> as the modifier, an efficient electrocatalytic material (ZrO<sub>2</sub>-Ni/CNT) is designed and synthesized in this paper. The structure and properties of the catalyst are characterized by various instrumental analysis methods such as SEM, TEM, XRD and XPS. The electrochemical test results show that the addition of ZrO<sub>2</sub> can significantly improve the catalytic performance of this catalyst in the electrochemical water splitting. In an alkaline solution, ZrO<sub>2</sub>-Ni/CNT catalyst displays an exceedingly low overpotential of 169 mV and 249 mV at the current density of 10 mA cm<sup>−2</sup> towards hydrogen evolution reaction and oxygen evolution reaction, respectively. This work shows that the modification of ZrO<sub>2</sub> can improve the electrocatalytic activity of Ni-based materials, and the modification strategy can be applied to improve the electrocatalytic activity of commercial Ni-based electrode materials.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"150 \",\"pages\":\"Article 111731\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963524009440\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009440","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Application of ZrO2 and Ni modified carbon nanotube composites as bifunctional water electrolysis catalysts
By using carbon nanotube (CNT) as the carrier, Ni as the active center and ZrO2 as the modifier, an efficient electrocatalytic material (ZrO2-Ni/CNT) is designed and synthesized in this paper. The structure and properties of the catalyst are characterized by various instrumental analysis methods such as SEM, TEM, XRD and XPS. The electrochemical test results show that the addition of ZrO2 can significantly improve the catalytic performance of this catalyst in the electrochemical water splitting. In an alkaline solution, ZrO2-Ni/CNT catalyst displays an exceedingly low overpotential of 169 mV and 249 mV at the current density of 10 mA cm−2 towards hydrogen evolution reaction and oxygen evolution reaction, respectively. This work shows that the modification of ZrO2 can improve the electrocatalytic activity of Ni-based materials, and the modification strategy can be applied to improve the electrocatalytic activity of commercial Ni-based electrode materials.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.