{"title":"使用土工聚合物替代传统水泥制备优质建筑材料","authors":"Yuanchuan Ren , Shanqisong Huang , Yan Hu , Nanqi Ren , Lingrui Kuang , Fenghui Wu , Dandan Chen , Xuejun Zhu , Qiang Niu","doi":"10.1016/j.partic.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>In order to improve the resource utilization rate of aluminum ash, high-quality building materials were prepared by replacing traditional cement with aluminum ash, and the performance of building materials under different conditions and factors was studied. The experimental results show that when the pressure was 300 MPa and the natural curing time was 3 days, the comprehensive performance of the brick reaches its optimum (compressive strength of 60 MPa, flexural strength of 1.3 MPa, and softening coefficient of about 0.9), far superior to other reported methods for preparing building materials. SEM-EDS, Particle size analysis and XRD confirmed that the crystal structure in aluminum ash undergoes a transformation under high-intensity mechanical pressure, forming cement-based active substances. This study not only obtained a new method for preparing building materials, but also further promoted the research on the resource utilization of aluminum ash, providing a new approach for the treatment and disposal of hazardous waste.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 333-342"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of excellent building materials using geopolymer instead of traditional cement\",\"authors\":\"Yuanchuan Ren , Shanqisong Huang , Yan Hu , Nanqi Ren , Lingrui Kuang , Fenghui Wu , Dandan Chen , Xuejun Zhu , Qiang Niu\",\"doi\":\"10.1016/j.partic.2024.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to improve the resource utilization rate of aluminum ash, high-quality building materials were prepared by replacing traditional cement with aluminum ash, and the performance of building materials under different conditions and factors was studied. The experimental results show that when the pressure was 300 MPa and the natural curing time was 3 days, the comprehensive performance of the brick reaches its optimum (compressive strength of 60 MPa, flexural strength of 1.3 MPa, and softening coefficient of about 0.9), far superior to other reported methods for preparing building materials. SEM-EDS, Particle size analysis and XRD confirmed that the crystal structure in aluminum ash undergoes a transformation under high-intensity mechanical pressure, forming cement-based active substances. This study not only obtained a new method for preparing building materials, but also further promoted the research on the resource utilization of aluminum ash, providing a new approach for the treatment and disposal of hazardous waste.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"95 \",\"pages\":\"Pages 333-342\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124002098\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002098","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Preparation of excellent building materials using geopolymer instead of traditional cement
In order to improve the resource utilization rate of aluminum ash, high-quality building materials were prepared by replacing traditional cement with aluminum ash, and the performance of building materials under different conditions and factors was studied. The experimental results show that when the pressure was 300 MPa and the natural curing time was 3 days, the comprehensive performance of the brick reaches its optimum (compressive strength of 60 MPa, flexural strength of 1.3 MPa, and softening coefficient of about 0.9), far superior to other reported methods for preparing building materials. SEM-EDS, Particle size analysis and XRD confirmed that the crystal structure in aluminum ash undergoes a transformation under high-intensity mechanical pressure, forming cement-based active substances. This study not only obtained a new method for preparing building materials, but also further promoted the research on the resource utilization of aluminum ash, providing a new approach for the treatment and disposal of hazardous waste.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.