{"title":"费弗曼不等式的锐解析版本","authors":"Tomasz Gałązka, Adam Osękowski","doi":"10.1016/j.jfa.2024.110707","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>T</mi></math></span> be a unit circle. Assume further that <em>f</em> is an element of the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> and <em>g</em> belongs to the analytic <em>BMO</em> space on <span><math><mi>T</mi></math></span>. The paper contains the identification of the optimal universal constant <em>C</em> in the estimate<span><span><span><math><mrow><mo>|</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><munder><mo>∫</mo><mrow><mi>T</mi></mrow></munder><mover><mrow><mi>f</mi><mo>(</mo><mi>ζ</mi><mo>)</mo></mrow><mo>‾</mo></mover><mi>g</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><mtext>d</mtext><mi>ζ</mi><mo>|</mo></mrow><mo>≤</mo><mi>C</mi><mspace></mspace><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><msub><mrow><mo>‖</mo><mi>g</mi><mo>‖</mo></mrow><mrow><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>.</mo></math></span></span></span> Actually, the inequality is studied in the stronger form, involving the Littlewood-Paley function on the left and the sharp maximal function of <em>g</em> on the right. The proof rests on the construction of an appropriate plurisuperharmonic function on a parabolic domain and the application of probabilistic techniques.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp analytic version of Fefferman's inequality\",\"authors\":\"Tomasz Gałązka, Adam Osękowski\",\"doi\":\"10.1016/j.jfa.2024.110707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>T</mi></math></span> be a unit circle. Assume further that <em>f</em> is an element of the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>T</mi><mo>)</mo></math></span> and <em>g</em> belongs to the analytic <em>BMO</em> space on <span><math><mi>T</mi></math></span>. The paper contains the identification of the optimal universal constant <em>C</em> in the estimate<span><span><span><math><mrow><mo>|</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><munder><mo>∫</mo><mrow><mi>T</mi></mrow></munder><mover><mrow><mi>f</mi><mo>(</mo><mi>ζ</mi><mo>)</mo></mrow><mo>‾</mo></mover><mi>g</mi><mo>(</mo><mi>ζ</mi><mo>)</mo><mtext>d</mtext><mi>ζ</mi><mo>|</mo></mrow><mo>≤</mo><mi>C</mi><mspace></mspace><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><msub><mrow><mo>‖</mo><mi>g</mi><mo>‖</mo></mrow><mrow><mi>B</mi><mi>M</mi><mi>O</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></msub><mo>.</mo></math></span></span></span> Actually, the inequality is studied in the stronger form, involving the Littlewood-Paley function on the left and the sharp maximal function of <em>g</em> on the right. The proof rests on the construction of an appropriate plurisuperharmonic function on a parabolic domain and the application of probabilistic techniques.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003951\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003951","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
假设 T 是单位圆。本文包含对估计|12π∫Tf(ζ)‾g(ζ)dζ|≤C‖f‖H1(T)‖g‖BMO(T)中最优通用常数 C 的鉴定。实际上,不等式是以更强的形式研究的,左边涉及 Littlewood-Paley 函数,右边涉及 g 的尖锐最大函数。证明依赖于在抛物线域上构造一个适当的诸超谐函数以及概率技术的应用。
Let be a unit circle. Assume further that f is an element of the Hardy space and g belongs to the analytic BMO space on . The paper contains the identification of the optimal universal constant C in the estimate Actually, the inequality is studied in the stronger form, involving the Littlewood-Paley function on the left and the sharp maximal function of g on the right. The proof rests on the construction of an appropriate plurisuperharmonic function on a parabolic domain and the application of probabilistic techniques.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis