抽水蓄能日前调度的多保真度优化

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Pietro Favaro , Maxime Gobert , Jean-François Toubeau
{"title":"抽水蓄能日前调度的多保真度优化","authors":"Pietro Favaro ,&nbsp;Maxime Gobert ,&nbsp;Jean-François Toubeau","doi":"10.1016/j.est.2024.114096","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power conversion efficiency. While traditional methods like Mixed-Integer Linear Programming (MILP) offer theoretical guarantees, they rely on approximations that can lead to suboptimal decisions and costly redispatch or penalties. Because of its inherent approximations, MILP is a low-fidelity optimization model. In this paper, we propose a multi-fidelity approach that combines MILP with a Surrogate-Based Optimization Algorithm (SBOA). MILP solutions are used as warm-starts for the SBOA, which refines the solutions using a high-fidelity simulator of PHES dynamics and redispatch costs. This allows the SBOA to handle nonlinearities and improve the initial MILP solution by exploring areas with higher expected value. Our approach is tested on a PHES unit that participates in the energy and reserve markets in Belgium. The results show that, despite the extensive efforts made in MILP modeling, decisions can still be improved through smart integration with SBOAs.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-fidelity optimization for the day-ahead scheduling of Pumped Hydro Energy Storage\",\"authors\":\"Pietro Favaro ,&nbsp;Maxime Gobert ,&nbsp;Jean-François Toubeau\",\"doi\":\"10.1016/j.est.2024.114096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power conversion efficiency. While traditional methods like Mixed-Integer Linear Programming (MILP) offer theoretical guarantees, they rely on approximations that can lead to suboptimal decisions and costly redispatch or penalties. Because of its inherent approximations, MILP is a low-fidelity optimization model. In this paper, we propose a multi-fidelity approach that combines MILP with a Surrogate-Based Optimization Algorithm (SBOA). MILP solutions are used as warm-starts for the SBOA, which refines the solutions using a high-fidelity simulator of PHES dynamics and redispatch costs. This allows the SBOA to handle nonlinearities and improve the initial MILP solution by exploring areas with higher expected value. Our approach is tested on a PHES unit that participates in the energy and reserve markets in Belgium. The results show that, despite the extensive efforts made in MILP modeling, decisions can still be improved through smart integration with SBOAs.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X2403682X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X2403682X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

要优化抽水蓄能系统(PHES)的运行,就必须准确反映非线性因素,如水库的几何形状和水电转换效率。虽然混合整数线性规划 (MILP) 等传统方法提供了理论保证,但它们依赖于近似值,可能导致次优决策和代价高昂的重新调度或惩罚。由于其固有的近似性,MILP 是一种低保真优化模型。在本文中,我们提出了一种将 MILP 与基于代理的优化算法 (SBOA) 相结合的多保真度方法。MILP 解决方案被用作 SBOA 的热启动,而 SBOA 则使用 PHES 动态和再调度成本的高保真模拟器来完善解决方案。这使得 SBOA 能够处理非线性问题,并通过探索具有更高预期值的区域来改进初始 MILP 解决方案。我们的方法在参与比利时能源和储备市场的 PHES 机组上进行了测试。结果表明,尽管在 MILP 建模方面做了大量工作,但通过与 SBOA 的智能集成,仍可改进决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-fidelity optimization for the day-ahead scheduling of Pumped Hydro Energy Storage
Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power conversion efficiency. While traditional methods like Mixed-Integer Linear Programming (MILP) offer theoretical guarantees, they rely on approximations that can lead to suboptimal decisions and costly redispatch or penalties. Because of its inherent approximations, MILP is a low-fidelity optimization model. In this paper, we propose a multi-fidelity approach that combines MILP with a Surrogate-Based Optimization Algorithm (SBOA). MILP solutions are used as warm-starts for the SBOA, which refines the solutions using a high-fidelity simulator of PHES dynamics and redispatch costs. This allows the SBOA to handle nonlinearities and improve the initial MILP solution by exploring areas with higher expected value. Our approach is tested on a PHES unit that participates in the energy and reserve markets in Belgium. The results show that, despite the extensive efforts made in MILP modeling, decisions can still be improved through smart integration with SBOAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信