Elias Semlali*, Evelyne Gil, Geoffrey Avit, Yamina André, Arthur Sauvagnat, Jihen Jridi, Andriy V. Moskalenko, Philip A. Shields, Névine Rochat, Adeline Grenier and Agnès Trassoudaine*,
{"title":"在纳米尺度上控制 SAG-GaN","authors":"Elias Semlali*, Evelyne Gil, Geoffrey Avit, Yamina André, Arthur Sauvagnat, Jihen Jridi, Andriy V. Moskalenko, Philip A. Shields, Névine Rochat, Adeline Grenier and Agnès Trassoudaine*, ","doi":"10.1021/acs.cgd.4c0092510.1021/acs.cgd.4c00925","DOIUrl":null,"url":null,"abstract":"<p >Selective area growth (SAG) of GaN nanowires was performed on GaN on c-plane sapphire templates masked with SiN using hydride vapor phase epitaxy (HVPE). GaN nanowires exhibited various morphologies, discussed as a function of the pattern design, the partial pressure of the Ga gaseous precursor, the composition of the carrier gas, and the growth temperature. The morphologies are elucidated by involving a comparative study of growth rates of facets relative to each other. CL measurements showed high emission quality for GaN nanowires grown at 930 °C. This work places HVPE as an effective epitaxial technique for growing III–N nanostructure-based devices at a low cost.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of SAG-GaN at the Nanoscale\",\"authors\":\"Elias Semlali*, Evelyne Gil, Geoffrey Avit, Yamina André, Arthur Sauvagnat, Jihen Jridi, Andriy V. Moskalenko, Philip A. Shields, Névine Rochat, Adeline Grenier and Agnès Trassoudaine*, \",\"doi\":\"10.1021/acs.cgd.4c0092510.1021/acs.cgd.4c00925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Selective area growth (SAG) of GaN nanowires was performed on GaN on c-plane sapphire templates masked with SiN using hydride vapor phase epitaxy (HVPE). GaN nanowires exhibited various morphologies, discussed as a function of the pattern design, the partial pressure of the Ga gaseous precursor, the composition of the carrier gas, and the growth temperature. The morphologies are elucidated by involving a comparative study of growth rates of facets relative to each other. CL measurements showed high emission quality for GaN nanowires grown at 930 °C. This work places HVPE as an effective epitaxial technique for growing III–N nanostructure-based devices at a low cost.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00925\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00925","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
利用氢化物气相外延 (HVPE) 技术,在用氮化硅掩蔽的 c 平面蓝宝石模板上进行了氮化镓纳米线的选择性面积生长 (SAG)。GaN 纳米线呈现出各种形态,这些形态是图案设计、气态 Ga 前驱体的分压、载气成分和生长温度的函数。通过对各刻面相对生长速度的比较研究,阐明了这些形态。CL测量结果表明,在930 °C下生长的氮化镓纳米线具有较高的发射质量。这项研究将 HVPE 作为一种有效的外延技术,用于以低成本生长基于 III-N 纳米结构的器件。
Selective area growth (SAG) of GaN nanowires was performed on GaN on c-plane sapphire templates masked with SiN using hydride vapor phase epitaxy (HVPE). GaN nanowires exhibited various morphologies, discussed as a function of the pattern design, the partial pressure of the Ga gaseous precursor, the composition of the carrier gas, and the growth temperature. The morphologies are elucidated by involving a comparative study of growth rates of facets relative to each other. CL measurements showed high emission quality for GaN nanowires grown at 930 °C. This work places HVPE as an effective epitaxial technique for growing III–N nanostructure-based devices at a low cost.