Wensu Yang, Pei Lv, Jiayi Li, Xiaoping Jin*, Ke Yang, Huan Dai and Wei Xu*,
{"title":"锌导向异金属铀有机框架的结构设计:多功能检测水中的 Cr2O72- 和 Metamitron 污染物","authors":"Wensu Yang, Pei Lv, Jiayi Li, Xiaoping Jin*, Ke Yang, Huan Dai and Wei Xu*, ","doi":"10.1021/acs.cgd.4c0115310.1021/acs.cgd.4c01153","DOIUrl":null,"url":null,"abstract":"<p >Based on the hard and soft acid and base (HSAB) theory, three heterometallic uranyl organic frameworks (UOFs), namely, [Zn(UO<sub>2</sub>)(npa)<sub>2</sub>(2,2′-bpy)(H<sub>2</sub>O)] (<b>1</b>), [Zn(UO<sub>2</sub>)(nip)<sub>2</sub>(2,9-dm-1,10-phen)] (<b>2</b>), and [Zn(UO<sub>2</sub>)(ntp)<sub>2</sub>(4,7-dm-1,10-phen)(H<sub>2</sub>O)]·(H<sub>2</sub>O) (<b>3</b>), have been solvothermally synthesized by using a variety of different substituted nitro-benzenedicarboxylic acid (H<sub>2</sub>npa = 3-nitrophthalic acid, H<sub>2</sub>nip = 5-nitroisophthalic acid, H<sub>2</sub>ntp = 2-nitroterephthalic acid) and uranyl zinc acetate, in the presence of N-bearing coligands, including 2,2′-bipyridine (2,2′-bpy), 2,9-dimethyl-1,10-phenanthroline (2,9-dm- 1,10-phen), and 4,7-dimethyl-1,10-phenanthroline (4,7-dm-1,10-phen). The results of single-crystal X-ray diffraction analysis show that each of them presents a heterometallic interaction between the uranyl and Zn<sup>2+</sup> centers. UOFs <b>2</b> and <b>3</b> adopt three-dimensional (3D) frameworks with different architectures, while UOF <b>1</b> exhibits a one-dimensional (1D) chain assembly. Furthermore, <b>1</b> can be used as a bifunctional luminescent sensor for the detection of metamitron (MMT) and Cr<sub>2</sub>O<sub>7</sub><sup>2–</sup> in aqueous solution with the limit of detection (LOD) for 4.06 × 10<sup>–6</sup> and 2.52 × 10<sup>–6</sup> M, respectively. The sensing mechanism was also investigated in detail through ultraviolet–visible (UV–vis) absorption spectroscopy, density functional theory calculations (DFT), and fluorescence lifetime analysis. This work provides valuable guidance for the facile and effective design and construction to employ UOFs as multiresponsive fluorescence sensors for the detection of environmental pollutants in aqueous solution.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 21","pages":"9133–9145 9133–9145"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Design of Zinc-Directed Heterometallic Uranyl Organic Frameworks: Multifunction Detection of Cr2O72– and Metamitron Contaminants from Water\",\"authors\":\"Wensu Yang, Pei Lv, Jiayi Li, Xiaoping Jin*, Ke Yang, Huan Dai and Wei Xu*, \",\"doi\":\"10.1021/acs.cgd.4c0115310.1021/acs.cgd.4c01153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Based on the hard and soft acid and base (HSAB) theory, three heterometallic uranyl organic frameworks (UOFs), namely, [Zn(UO<sub>2</sub>)(npa)<sub>2</sub>(2,2′-bpy)(H<sub>2</sub>O)] (<b>1</b>), [Zn(UO<sub>2</sub>)(nip)<sub>2</sub>(2,9-dm-1,10-phen)] (<b>2</b>), and [Zn(UO<sub>2</sub>)(ntp)<sub>2</sub>(4,7-dm-1,10-phen)(H<sub>2</sub>O)]·(H<sub>2</sub>O) (<b>3</b>), have been solvothermally synthesized by using a variety of different substituted nitro-benzenedicarboxylic acid (H<sub>2</sub>npa = 3-nitrophthalic acid, H<sub>2</sub>nip = 5-nitroisophthalic acid, H<sub>2</sub>ntp = 2-nitroterephthalic acid) and uranyl zinc acetate, in the presence of N-bearing coligands, including 2,2′-bipyridine (2,2′-bpy), 2,9-dimethyl-1,10-phenanthroline (2,9-dm- 1,10-phen), and 4,7-dimethyl-1,10-phenanthroline (4,7-dm-1,10-phen). The results of single-crystal X-ray diffraction analysis show that each of them presents a heterometallic interaction between the uranyl and Zn<sup>2+</sup> centers. UOFs <b>2</b> and <b>3</b> adopt three-dimensional (3D) frameworks with different architectures, while UOF <b>1</b> exhibits a one-dimensional (1D) chain assembly. Furthermore, <b>1</b> can be used as a bifunctional luminescent sensor for the detection of metamitron (MMT) and Cr<sub>2</sub>O<sub>7</sub><sup>2–</sup> in aqueous solution with the limit of detection (LOD) for 4.06 × 10<sup>–6</sup> and 2.52 × 10<sup>–6</sup> M, respectively. The sensing mechanism was also investigated in detail through ultraviolet–visible (UV–vis) absorption spectroscopy, density functional theory calculations (DFT), and fluorescence lifetime analysis. This work provides valuable guidance for the facile and effective design and construction to employ UOFs as multiresponsive fluorescence sensors for the detection of environmental pollutants in aqueous solution.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"24 21\",\"pages\":\"9133–9145 9133–9145\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01153\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01153","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural Design of Zinc-Directed Heterometallic Uranyl Organic Frameworks: Multifunction Detection of Cr2O72– and Metamitron Contaminants from Water
Based on the hard and soft acid and base (HSAB) theory, three heterometallic uranyl organic frameworks (UOFs), namely, [Zn(UO2)(npa)2(2,2′-bpy)(H2O)] (1), [Zn(UO2)(nip)2(2,9-dm-1,10-phen)] (2), and [Zn(UO2)(ntp)2(4,7-dm-1,10-phen)(H2O)]·(H2O) (3), have been solvothermally synthesized by using a variety of different substituted nitro-benzenedicarboxylic acid (H2npa = 3-nitrophthalic acid, H2nip = 5-nitroisophthalic acid, H2ntp = 2-nitroterephthalic acid) and uranyl zinc acetate, in the presence of N-bearing coligands, including 2,2′-bipyridine (2,2′-bpy), 2,9-dimethyl-1,10-phenanthroline (2,9-dm- 1,10-phen), and 4,7-dimethyl-1,10-phenanthroline (4,7-dm-1,10-phen). The results of single-crystal X-ray diffraction analysis show that each of them presents a heterometallic interaction between the uranyl and Zn2+ centers. UOFs 2 and 3 adopt three-dimensional (3D) frameworks with different architectures, while UOF 1 exhibits a one-dimensional (1D) chain assembly. Furthermore, 1 can be used as a bifunctional luminescent sensor for the detection of metamitron (MMT) and Cr2O72– in aqueous solution with the limit of detection (LOD) for 4.06 × 10–6 and 2.52 × 10–6 M, respectively. The sensing mechanism was also investigated in detail through ultraviolet–visible (UV–vis) absorption spectroscopy, density functional theory calculations (DFT), and fluorescence lifetime analysis. This work provides valuable guidance for the facile and effective design and construction to employ UOFs as multiresponsive fluorescence sensors for the detection of environmental pollutants in aqueous solution.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.