Hongrui Zhang, Jinzhong Gu*, Marina V. Kirillova and Alexander M. Kirillov*,
{"title":"三羧酸三联苯配位聚合物:从水热组装到结构多样性和催化应用","authors":"Hongrui Zhang, Jinzhong Gu*, Marina V. Kirillova and Alexander M. Kirillov*, ","doi":"10.1021/acs.cgd.4c0122110.1021/acs.cgd.4c01221","DOIUrl":null,"url":null,"abstract":"<p >An aromatic tricarboxylic acid building block, [1,1′:3′,1″-terphenyl]-4,4″,5′-tricarboxylic acid (H<sub>3</sub>tptca), was used as a versatile linker for assembling, under hydrothermal conditions, a series of 12 new coordination polymers (CPs) in the presence of supporting <i>N</i>-donor ligands acting as mediators of crystallization. The obtained products were formulated as [Mn(μ-Htptca)(phen)<sub>2</sub>]<sub><i>n</i></sub>·<i>n</i>H<sub>2</sub>O (<b>1</b>), [Zn(μ-Htptca)(2,2′-bipy)(H<sub>2</sub>O)]<sub><i>n</i></sub>·<i>n</i>H<sub>2</sub>O (<b>2</b>), [Ni(μ<sub>3</sub>-Htptca)(μ-4,4′-bipy)]<sub><i>n</i></sub>·2<i>n</i>H<sub>2</sub>O (<b>3</b>), [Co(μ<sub>3</sub>-Htptca)(μ-bpe)]<sub><i>n</i></sub> (<b>4</b>), [M<sub>3</sub>(μ<sub>3</sub>-tptca)<sub>2</sub>(phen)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>·2<i>n</i>H<sub>2</sub>O (M = Co (<b>5</b>), Zn (<b>6</b>)), [Co<sub>2</sub>(μ<sub>4</sub>-tptca)(μ-OH)(2,2′-bipy)<sub>2</sub>]<sub><i>n</i></sub> (<b>7</b>), [Zn<sub>3</sub>(μ<sub>3</sub>-tptca)<sub>2</sub>(2,2′-bipy)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>·4<i>n</i>H<sub>2</sub>O (<b>8</b>), {[Cd(H<sub>2</sub>biim)<sub>3</sub>][Cd<sub>2</sub>(μ<sub>3</sub>-tptca)(μ<sub>5</sub>-tptca)]}<sub><i>n</i></sub> (<b>9</b>), [Co<sub>2</sub>(μ<sub>4</sub>-tptca)(μ-bpa)(μ<sub>3</sub>-OH)(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>·<i>n</i>H<sub>2</sub>O (<b>10</b>), [Ni<sub>3</sub>(μ<sub>3</sub>-tptca)<sub>2</sub>(μ-bpa)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub>]<sub><i>n</i></sub>·5<i>n</i>H<sub>2</sub>O (<b>11</b>), and [Co<sub>2</sub>(μ<sub>4</sub>-tptca)(μ-bpb)(μ-OH)]<sub><i>n</i></sub> (<b>12</b>), wherein phen, 2,2′-bipy, 4,4′-bipy, bpe, H<sub>2</sub>biim, bpa, and bpb are 1,10-phenanthroline, 2,2′- and 4,4′-bipyridine, 1,2-di(4-pyridyl)ethane, 2,2′-biimidazole, bis(4-pyridyl)amine, and 1,4-bis(pyrid-4-yl)benzene, respectively. Crystal structures of CPs <b>1</b>–<b>12</b> reveal a broad diversity metal–organic networks that range from 1D chains (<b>1</b>, <b>2</b>, <b>5</b>, <b>6</b>, and <b>8</b>) to 2D layers (<b>3</b>, <b>4</b>, <b>7</b>, <b>9</b>, and <b>11</b>) and 3D nets (<b>10</b> and <b>12</b>), including the examples of interpenetrated, polycatenated, and topologically unique architectures. Structural features and catalytic properties of the obtained CPs were studied and discussed. In particular, a Zn(II) CP <b>8</b> acts as an efficient and recyclable heterogeneous catalyst for the mild cyanosilylation of benzaldehydes, leading to the formation of the corresponding cyanohydrin products in up to 99% yields. The obtained compounds widen a growing family of functional CPs driven by terphenyl-tricarboxylate linkers.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 21","pages":"9207–9222 9207–9222"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terphenyl-Tricarboxylate Coordination Polymers: From Hydrothermal Assembly to Structural Diversity and Catalytic Application\",\"authors\":\"Hongrui Zhang, Jinzhong Gu*, Marina V. Kirillova and Alexander M. Kirillov*, \",\"doi\":\"10.1021/acs.cgd.4c0122110.1021/acs.cgd.4c01221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An aromatic tricarboxylic acid building block, [1,1′:3′,1″-terphenyl]-4,4″,5′-tricarboxylic acid (H<sub>3</sub>tptca), was used as a versatile linker for assembling, under hydrothermal conditions, a series of 12 new coordination polymers (CPs) in the presence of supporting <i>N</i>-donor ligands acting as mediators of crystallization. The obtained products were formulated as [Mn(μ-Htptca)(phen)<sub>2</sub>]<sub><i>n</i></sub>·<i>n</i>H<sub>2</sub>O (<b>1</b>), [Zn(μ-Htptca)(2,2′-bipy)(H<sub>2</sub>O)]<sub><i>n</i></sub>·<i>n</i>H<sub>2</sub>O (<b>2</b>), [Ni(μ<sub>3</sub>-Htptca)(μ-4,4′-bipy)]<sub><i>n</i></sub>·2<i>n</i>H<sub>2</sub>O (<b>3</b>), [Co(μ<sub>3</sub>-Htptca)(μ-bpe)]<sub><i>n</i></sub> (<b>4</b>), [M<sub>3</sub>(μ<sub>3</sub>-tptca)<sub>2</sub>(phen)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>·2<i>n</i>H<sub>2</sub>O (M = Co (<b>5</b>), Zn (<b>6</b>)), [Co<sub>2</sub>(μ<sub>4</sub>-tptca)(μ-OH)(2,2′-bipy)<sub>2</sub>]<sub><i>n</i></sub> (<b>7</b>), [Zn<sub>3</sub>(μ<sub>3</sub>-tptca)<sub>2</sub>(2,2′-bipy)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>·4<i>n</i>H<sub>2</sub>O (<b>8</b>), {[Cd(H<sub>2</sub>biim)<sub>3</sub>][Cd<sub>2</sub>(μ<sub>3</sub>-tptca)(μ<sub>5</sub>-tptca)]}<sub><i>n</i></sub> (<b>9</b>), [Co<sub>2</sub>(μ<sub>4</sub>-tptca)(μ-bpa)(μ<sub>3</sub>-OH)(H<sub>2</sub>O)<sub>2</sub>]<sub><i>n</i></sub>·<i>n</i>H<sub>2</sub>O (<b>10</b>), [Ni<sub>3</sub>(μ<sub>3</sub>-tptca)<sub>2</sub>(μ-bpa)<sub>3</sub>(H<sub>2</sub>O)<sub>4</sub>]<sub><i>n</i></sub>·5<i>n</i>H<sub>2</sub>O (<b>11</b>), and [Co<sub>2</sub>(μ<sub>4</sub>-tptca)(μ-bpb)(μ-OH)]<sub><i>n</i></sub> (<b>12</b>), wherein phen, 2,2′-bipy, 4,4′-bipy, bpe, H<sub>2</sub>biim, bpa, and bpb are 1,10-phenanthroline, 2,2′- and 4,4′-bipyridine, 1,2-di(4-pyridyl)ethane, 2,2′-biimidazole, bis(4-pyridyl)amine, and 1,4-bis(pyrid-4-yl)benzene, respectively. Crystal structures of CPs <b>1</b>–<b>12</b> reveal a broad diversity metal–organic networks that range from 1D chains (<b>1</b>, <b>2</b>, <b>5</b>, <b>6</b>, and <b>8</b>) to 2D layers (<b>3</b>, <b>4</b>, <b>7</b>, <b>9</b>, and <b>11</b>) and 3D nets (<b>10</b> and <b>12</b>), including the examples of interpenetrated, polycatenated, and topologically unique architectures. Structural features and catalytic properties of the obtained CPs were studied and discussed. In particular, a Zn(II) CP <b>8</b> acts as an efficient and recyclable heterogeneous catalyst for the mild cyanosilylation of benzaldehydes, leading to the formation of the corresponding cyanohydrin products in up to 99% yields. The obtained compounds widen a growing family of functional CPs driven by terphenyl-tricarboxylate linkers.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"24 21\",\"pages\":\"9207–9222 9207–9222\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01221\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01221","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Terphenyl-Tricarboxylate Coordination Polymers: From Hydrothermal Assembly to Structural Diversity and Catalytic Application
An aromatic tricarboxylic acid building block, [1,1′:3′,1″-terphenyl]-4,4″,5′-tricarboxylic acid (H3tptca), was used as a versatile linker for assembling, under hydrothermal conditions, a series of 12 new coordination polymers (CPs) in the presence of supporting N-donor ligands acting as mediators of crystallization. The obtained products were formulated as [Mn(μ-Htptca)(phen)2]n·nH2O (1), [Zn(μ-Htptca)(2,2′-bipy)(H2O)]n·nH2O (2), [Ni(μ3-Htptca)(μ-4,4′-bipy)]n·2nH2O (3), [Co(μ3-Htptca)(μ-bpe)]n (4), [M3(μ3-tptca)2(phen)3(H2O)2]n·2nH2O (M = Co (5), Zn (6)), [Co2(μ4-tptca)(μ-OH)(2,2′-bipy)2]n (7), [Zn3(μ3-tptca)2(2,2′-bipy)3(H2O)2]n·4nH2O (8), {[Cd(H2biim)3][Cd2(μ3-tptca)(μ5-tptca)]}n (9), [Co2(μ4-tptca)(μ-bpa)(μ3-OH)(H2O)2]n·nH2O (10), [Ni3(μ3-tptca)2(μ-bpa)3(H2O)4]n·5nH2O (11), and [Co2(μ4-tptca)(μ-bpb)(μ-OH)]n (12), wherein phen, 2,2′-bipy, 4,4′-bipy, bpe, H2biim, bpa, and bpb are 1,10-phenanthroline, 2,2′- and 4,4′-bipyridine, 1,2-di(4-pyridyl)ethane, 2,2′-biimidazole, bis(4-pyridyl)amine, and 1,4-bis(pyrid-4-yl)benzene, respectively. Crystal structures of CPs 1–12 reveal a broad diversity metal–organic networks that range from 1D chains (1, 2, 5, 6, and 8) to 2D layers (3, 4, 7, 9, and 11) and 3D nets (10 and 12), including the examples of interpenetrated, polycatenated, and topologically unique architectures. Structural features and catalytic properties of the obtained CPs were studied and discussed. In particular, a Zn(II) CP 8 acts as an efficient and recyclable heterogeneous catalyst for the mild cyanosilylation of benzaldehydes, leading to the formation of the corresponding cyanohydrin products in up to 99% yields. The obtained compounds widen a growing family of functional CPs driven by terphenyl-tricarboxylate linkers.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.