用于有氧 C-H 活化的 Na 促进双金属氢氧化物纳米粒子:催化剂设计原理与反应机理透视

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beyzanur Erdivan, Eylul Calikyilmaz, Suay Bilgin, Ayse Dilay Erdali, Damla Nur Gul, Kerem Emre Ercan, Yunus Emre Türkmen* and Emrah Ozensoy*, 
{"title":"用于有氧 C-H 活化的 Na 促进双金属氢氧化物纳米粒子:催化剂设计原理与反应机理透视","authors":"Beyzanur Erdivan,&nbsp;Eylul Calikyilmaz,&nbsp;Suay Bilgin,&nbsp;Ayse Dilay Erdali,&nbsp;Damla Nur Gul,&nbsp;Kerem Emre Ercan,&nbsp;Yunus Emre Türkmen* and Emrah Ozensoy*,&nbsp;","doi":"10.1021/acsami.4c1107010.1021/acsami.4c11070","DOIUrl":null,"url":null,"abstract":"<p >A precious metal-free bimetallic Fe<sub><i>x</i></sub>Mn<sub>1–<i>x</i></sub>(OH)<sub><i>y</i></sub> hydroxide catalyst was developed that is capable of catalyzing aerobic C–H oxidation reactions at low temperatures, without the need for an initiator, relying sustainably on molecular oxygen. Through a systematic synthetic effort, we scanned a wide nanoparticle synthesis parameter space to lay out a detailed set of catalyst design principles unraveling how the Fe/Mn cation ratio, NaOH(aq) concentration used in the synthesis, catalyst washing procedures, extent of residual Na<sup>+</sup> promoters on the catalyst surface, reaction temperature, and catalyst loading influence catalytic C–H activation performance as a function of the electronic, surface chemical, and crystal structure of Fe<sub><i>x</i></sub>Mn<sub>1–<i>x</i></sub>(OH)<sub><i>y</i></sub> bimetallic hydroxide nanostructures. Our comprehensive XRD, XPS, BET, ICP-MS, <sup>1</sup>H NMR, and XANES structural/product characterization results as well as mechanistic kinetic isotope effect (KIE) studies provided the following valuable insights into the molecular level origins of the catalytic performance of the bimetallic Fe<sub><i>x</i></sub>Mn<sub>1–<i>x</i></sub>(OH)<sub><i>y</i></sub> hydroxide nanostructures: (i) catalytic reactivity is due to the coexistence and synergistic operation of Fe<sup>3+</sup> and Mn<sup>3+</sup> cationic sites (with minor contributions from Fe<sup>2+</sup> and Mn<sup>2+</sup> sites) on the catalyst surface, where in the absence of one of these synergistic sites (i.e., in the presence of monometallic hydroxides), catalytic activity almost entirely vanishes, (ii) residual Na<sup>+</sup> species on the catalyst surface act as efficient electronic promoters by increasing the electron density on the Fe<sup>3+</sup> and Mn<sup>3+</sup> cationic sites, which in turn, presumably enhance the electrophilic adsorption of organic reactants and strengthen the interaction between molecular oxygen and the catalyst surface, (iii) in the fluorene oxidation reaction the step dictating the reaction rate likely involved the breaking of a C–H bond (<i>k</i><sub>H</sub><i>/k</i><sub>D</sub> = 2.4), (iv) reactivity patterns of a variety of alkylarene substrates indicate that the C–H bond cleavage follows a stepwise PT-ET (proton transfer-electron transfer) pathway.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 44","pages":"60151–60165 60151–60165"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsami.4c11070","citationCount":"0","resultStr":"{\"title\":\"Na-Promoted Bimetallic Hydroxide Nanoparticles for Aerobic C–H Activation: Catalyst Design Principles and Insights into Reaction Mechanism\",\"authors\":\"Beyzanur Erdivan,&nbsp;Eylul Calikyilmaz,&nbsp;Suay Bilgin,&nbsp;Ayse Dilay Erdali,&nbsp;Damla Nur Gul,&nbsp;Kerem Emre Ercan,&nbsp;Yunus Emre Türkmen* and Emrah Ozensoy*,&nbsp;\",\"doi\":\"10.1021/acsami.4c1107010.1021/acsami.4c11070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A precious metal-free bimetallic Fe<sub><i>x</i></sub>Mn<sub>1–<i>x</i></sub>(OH)<sub><i>y</i></sub> hydroxide catalyst was developed that is capable of catalyzing aerobic C–H oxidation reactions at low temperatures, without the need for an initiator, relying sustainably on molecular oxygen. Through a systematic synthetic effort, we scanned a wide nanoparticle synthesis parameter space to lay out a detailed set of catalyst design principles unraveling how the Fe/Mn cation ratio, NaOH(aq) concentration used in the synthesis, catalyst washing procedures, extent of residual Na<sup>+</sup> promoters on the catalyst surface, reaction temperature, and catalyst loading influence catalytic C–H activation performance as a function of the electronic, surface chemical, and crystal structure of Fe<sub><i>x</i></sub>Mn<sub>1–<i>x</i></sub>(OH)<sub><i>y</i></sub> bimetallic hydroxide nanostructures. Our comprehensive XRD, XPS, BET, ICP-MS, <sup>1</sup>H NMR, and XANES structural/product characterization results as well as mechanistic kinetic isotope effect (KIE) studies provided the following valuable insights into the molecular level origins of the catalytic performance of the bimetallic Fe<sub><i>x</i></sub>Mn<sub>1–<i>x</i></sub>(OH)<sub><i>y</i></sub> hydroxide nanostructures: (i) catalytic reactivity is due to the coexistence and synergistic operation of Fe<sup>3+</sup> and Mn<sup>3+</sup> cationic sites (with minor contributions from Fe<sup>2+</sup> and Mn<sup>2+</sup> sites) on the catalyst surface, where in the absence of one of these synergistic sites (i.e., in the presence of monometallic hydroxides), catalytic activity almost entirely vanishes, (ii) residual Na<sup>+</sup> species on the catalyst surface act as efficient electronic promoters by increasing the electron density on the Fe<sup>3+</sup> and Mn<sup>3+</sup> cationic sites, which in turn, presumably enhance the electrophilic adsorption of organic reactants and strengthen the interaction between molecular oxygen and the catalyst surface, (iii) in the fluorene oxidation reaction the step dictating the reaction rate likely involved the breaking of a C–H bond (<i>k</i><sub>H</sub><i>/k</i><sub>D</sub> = 2.4), (iv) reactivity patterns of a variety of alkylarene substrates indicate that the C–H bond cleavage follows a stepwise PT-ET (proton transfer-electron transfer) pathway.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 44\",\"pages\":\"60151–60165 60151–60165\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsami.4c11070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c11070\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c11070","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种不含贵金属的双金属 FexMn1-x(OH)y 氢氧化物催化剂,它能够在低温下催化有氧 C-H 氧化反应,无需引发剂,可持续依赖分子氧。通过系统的合成工作,我们扫描了广阔的纳米粒子合成参数空间,制定了一套详细的催化剂设计原则,揭示了铁/锰阳离子比、合成中使用的 NaOH(aq)浓度、催化剂洗涤程序、催化剂表面残留 Na+ 促进剂的程度、反应温度和催化剂负载如何影响催化 C-H 活化性能,以及 FexMn1-x(OH)y 双金属氢氧化物纳米结构的电子、表面化学和晶体结构。我们全面的 XRD、XPS、BET、ICP-MS、1H NMR 和 XANES 结构/产物表征结果以及机理动力学同位素效应(KIE)研究,为我们了解双金属 FexMn1-x(OH)y 氢氧化物纳米结构催化性能的分子水平起源提供了以下有价值的见解:(i) 催化反应活性是由于催化剂表面的 Fe3+ 和 Mn3+ 阳离子位点(Fe2+ 和 Mn2+ 位点的贡献较小)共存和协同作用的结果、(ii) 催化剂表面残留的 Na+ 物种通过增加 Fe3+ 和 Mn3+ 阳离子位点上的电子密度起到高效电子促进剂的作用,这反过来可能会增强有机反应物的亲电吸附,并加强分子氧与催化剂表面之间的相互作用,(iii) 在芴氧化反应中,决定反应速率的步骤可能涉及 C-H 键的断裂(kH/kD = 2.4),(iv) 多种烷基烯底物的反应模式表明,C-H 键的裂解遵循逐步的 PT-ET(质子转移-电子转移)途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Na-Promoted Bimetallic Hydroxide Nanoparticles for Aerobic C–H Activation: Catalyst Design Principles and Insights into Reaction Mechanism

A precious metal-free bimetallic FexMn1–x(OH)y hydroxide catalyst was developed that is capable of catalyzing aerobic C–H oxidation reactions at low temperatures, without the need for an initiator, relying sustainably on molecular oxygen. Through a systematic synthetic effort, we scanned a wide nanoparticle synthesis parameter space to lay out a detailed set of catalyst design principles unraveling how the Fe/Mn cation ratio, NaOH(aq) concentration used in the synthesis, catalyst washing procedures, extent of residual Na+ promoters on the catalyst surface, reaction temperature, and catalyst loading influence catalytic C–H activation performance as a function of the electronic, surface chemical, and crystal structure of FexMn1–x(OH)y bimetallic hydroxide nanostructures. Our comprehensive XRD, XPS, BET, ICP-MS, 1H NMR, and XANES structural/product characterization results as well as mechanistic kinetic isotope effect (KIE) studies provided the following valuable insights into the molecular level origins of the catalytic performance of the bimetallic FexMn1–x(OH)y hydroxide nanostructures: (i) catalytic reactivity is due to the coexistence and synergistic operation of Fe3+ and Mn3+ cationic sites (with minor contributions from Fe2+ and Mn2+ sites) on the catalyst surface, where in the absence of one of these synergistic sites (i.e., in the presence of monometallic hydroxides), catalytic activity almost entirely vanishes, (ii) residual Na+ species on the catalyst surface act as efficient electronic promoters by increasing the electron density on the Fe3+ and Mn3+ cationic sites, which in turn, presumably enhance the electrophilic adsorption of organic reactants and strengthen the interaction between molecular oxygen and the catalyst surface, (iii) in the fluorene oxidation reaction the step dictating the reaction rate likely involved the breaking of a C–H bond (kH/kD = 2.4), (iv) reactivity patterns of a variety of alkylarene substrates indicate that the C–H bond cleavage follows a stepwise PT-ET (proton transfer-electron transfer) pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信