分层纳米/微阵列结构铜镁铝-LDH/rGO 混合物显著提高柔性聚氯乙烯的阻燃和抑烟性能

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zixuan Zhang, Yuyang Chen, Defu Wang, Yanjun Lin*, Kaitao Li, Guoli Fan* and Feng Li, 
{"title":"分层纳米/微阵列结构铜镁铝-LDH/rGO 混合物显著提高柔性聚氯乙烯的阻燃和抑烟性能","authors":"Zixuan Zhang,&nbsp;Yuyang Chen,&nbsp;Defu Wang,&nbsp;Yanjun Lin*,&nbsp;Kaitao Li,&nbsp;Guoli Fan* and Feng Li,&nbsp;","doi":"10.1021/acsami.4c0943010.1021/acsami.4c09430","DOIUrl":null,"url":null,"abstract":"<p >In this study, we explored the rational integration of layered double hydroxides (LDHs) with reduced graphene oxide (rGO) to create a hierarchical nano/microarray structured CuMgAl-LDH/rGO hybrid aimed at enhancing the flame retardancy and smoke suppression properties of polymer nanocomposites. The results indicated that the limiting oxygen index (LOI) value of the G-CuMgAl/polyvinyl chloride (PVC) composite reached 35.8%, reflecting a 6.4% increase compared to pristine PVC (29.4%), and achieved a UL-94 V-0 rating. Furthermore, in comparison to pristine PVC, the peak heat release rate (PHRR) of the G-CuMgAl/PVC composite was significantly reduced by 40.2%; the total heat release rate (THR) decreased by 24.3%; the maximum average heat release rate (MARHE) diminished by 41.6%; the peak smoke production (PSPR) decreased by 37.8%; the total smoke production (TSP) was reduced by 31.3%; and the average effective heat of combustion (av-EHC) decreased by 15.2%. The enhanced flame retardancy and reduced smoke production can primarily be attributed to the multiple synergistic interactions among the highly dispersed constituents and the nano/microstructures, which effectively impede the transfer of heat, mass, and O<sub>2</sub> from various directions while preventing further combustion of the underlying matrix by creating a tortuous path in the condensed phase. Additionally, this study provides a novel perspective on the design and synthesis of structured LDHs/rGO hybrids, with the potential to enhance flame retardancy and smoke suppression properties across a broad spectrum of polymer materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 44","pages":"61224–61238 61224–61238"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Nano/Micro-Array Structured CuMgAl-LDH/rGO Hybrids for Remarkably Improved Flame Retardancy and Smoke Suppression Performance of Flexible Polyvinyl Chloride\",\"authors\":\"Zixuan Zhang,&nbsp;Yuyang Chen,&nbsp;Defu Wang,&nbsp;Yanjun Lin*,&nbsp;Kaitao Li,&nbsp;Guoli Fan* and Feng Li,&nbsp;\",\"doi\":\"10.1021/acsami.4c0943010.1021/acsami.4c09430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we explored the rational integration of layered double hydroxides (LDHs) with reduced graphene oxide (rGO) to create a hierarchical nano/microarray structured CuMgAl-LDH/rGO hybrid aimed at enhancing the flame retardancy and smoke suppression properties of polymer nanocomposites. The results indicated that the limiting oxygen index (LOI) value of the G-CuMgAl/polyvinyl chloride (PVC) composite reached 35.8%, reflecting a 6.4% increase compared to pristine PVC (29.4%), and achieved a UL-94 V-0 rating. Furthermore, in comparison to pristine PVC, the peak heat release rate (PHRR) of the G-CuMgAl/PVC composite was significantly reduced by 40.2%; the total heat release rate (THR) decreased by 24.3%; the maximum average heat release rate (MARHE) diminished by 41.6%; the peak smoke production (PSPR) decreased by 37.8%; the total smoke production (TSP) was reduced by 31.3%; and the average effective heat of combustion (av-EHC) decreased by 15.2%. The enhanced flame retardancy and reduced smoke production can primarily be attributed to the multiple synergistic interactions among the highly dispersed constituents and the nano/microstructures, which effectively impede the transfer of heat, mass, and O<sub>2</sub> from various directions while preventing further combustion of the underlying matrix by creating a tortuous path in the condensed phase. Additionally, this study provides a novel perspective on the design and synthesis of structured LDHs/rGO hybrids, with the potential to enhance flame retardancy and smoke suppression properties across a broad spectrum of polymer materials.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 44\",\"pages\":\"61224–61238 61224–61238\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c09430\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c09430","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们探索了层状双氢氧化物(LDHs)与还原氧化石墨烯(rGO)的合理整合,以创建分层纳米/微阵列结构的铜镁铝-LDH/rGO 杂化物,从而提高聚合物纳米复合材料的阻燃性和抑烟性能。结果表明,G-CuMgAl/聚氯乙烯(PVC)复合材料的极限氧指数(LOI)值达到了 35.8%,与原始 PVC(29.4%)相比提高了 6.4%,并达到了 UL-94 V-0 等级。此外,与原始 PVC 相比,G-CuMgAl/PVC 复合材料的峰值放热率(PHRR)显著降低了 40.2%;总放热率(THR)降低了 24.3%;最大平均放热率(MARHE)降低了 41.6%;峰值发烟量(PSPR)降低了 37.8%;总发烟量(TSP)降低了 31.3%;平均有效燃烧热(av-EHC)降低了 15.2%。阻燃性能的增强和烟雾产生量的减少主要归功于高度分散的成分和纳米/微结构之间的多重协同作用,它们有效地阻碍了来自不同方向的热量、质量和氧气的传递,同时通过在凝结相中形成迂回路径,阻止了底层基质的进一步燃烧。此外,这项研究还为设计和合成结构化 LDHs/rGO 混合物提供了一个新的视角,有望提高各种聚合物材料的阻燃性和抑烟性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hierarchical Nano/Micro-Array Structured CuMgAl-LDH/rGO Hybrids for Remarkably Improved Flame Retardancy and Smoke Suppression Performance of Flexible Polyvinyl Chloride

Hierarchical Nano/Micro-Array Structured CuMgAl-LDH/rGO Hybrids for Remarkably Improved Flame Retardancy and Smoke Suppression Performance of Flexible Polyvinyl Chloride

In this study, we explored the rational integration of layered double hydroxides (LDHs) with reduced graphene oxide (rGO) to create a hierarchical nano/microarray structured CuMgAl-LDH/rGO hybrid aimed at enhancing the flame retardancy and smoke suppression properties of polymer nanocomposites. The results indicated that the limiting oxygen index (LOI) value of the G-CuMgAl/polyvinyl chloride (PVC) composite reached 35.8%, reflecting a 6.4% increase compared to pristine PVC (29.4%), and achieved a UL-94 V-0 rating. Furthermore, in comparison to pristine PVC, the peak heat release rate (PHRR) of the G-CuMgAl/PVC composite was significantly reduced by 40.2%; the total heat release rate (THR) decreased by 24.3%; the maximum average heat release rate (MARHE) diminished by 41.6%; the peak smoke production (PSPR) decreased by 37.8%; the total smoke production (TSP) was reduced by 31.3%; and the average effective heat of combustion (av-EHC) decreased by 15.2%. The enhanced flame retardancy and reduced smoke production can primarily be attributed to the multiple synergistic interactions among the highly dispersed constituents and the nano/microstructures, which effectively impede the transfer of heat, mass, and O2 from various directions while preventing further combustion of the underlying matrix by creating a tortuous path in the condensed phase. Additionally, this study provides a novel perspective on the design and synthesis of structured LDHs/rGO hybrids, with the potential to enhance flame retardancy and smoke suppression properties across a broad spectrum of polymer materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信