用导电银取代氧化镓外壳:为高拉伸电子器件、电磁屏蔽和热界面开发可印刷和可回收的复合材料

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abdollah Hajalilou, Elahe Parvini, Tiago A. Morgado, Pedro Alhais Lopes, M. Estrela Melo Jorge, Marta Freitas and Mahmoud Tavakoli*, 
{"title":"用导电银取代氧化镓外壳:为高拉伸电子器件、电磁屏蔽和热界面开发可印刷和可回收的复合材料","authors":"Abdollah Hajalilou,&nbsp;Elahe Parvini,&nbsp;Tiago A. Morgado,&nbsp;Pedro Alhais Lopes,&nbsp;M. Estrela Melo Jorge,&nbsp;Marta Freitas and Mahmoud Tavakoli*,&nbsp;","doi":"10.1021/acsami.4c1715110.1021/acsami.4c17151","DOIUrl":null,"url":null,"abstract":"<p >Liquid metal (LM)-based composites hold promise for soft electronics due to their high conductivity and fluidic nature. However, the presence of α-Ga<sub>2</sub>O<sub>3</sub> and GaOOH layers around LM droplets impairs conductivity and performance. We tackle this issue by replacing the oxide layer with conductive silver (Ag) using an ultrasonic-assisted galvanic replacement reaction. The Ag-coated nanoparticles form aggregated, porous microparticles that are mixed with styrene–isoprene–styrene (SIS) polymers, resulting in a digitally printable composite with superior electrical conductivity and electromechanical properties compared to conventional fillers. Adding more LM enhances these properties further. The composite achieves EMI shielding effectiveness (SE) exceeding 75 dB in the X-band frequency range, even at 200% strain, meeting stringent military and medical standards. It is applicable in wireless communications and Bluetooth signal blocking and as a thermal interface material (TIM). Additionally, we highlight its recyclability using a biodegradable solvent, underscoring its eco-friendly potential. This composite represents a significant advancement in stretchable electronics and EMI shielding, with implications for wearable and bioelectronic applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 44","pages":"61157–61168 61157–61168"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Replacing the Gallium Oxide Shell with Conductive Ag: Toward a Printable and Recyclable Composite for Highly Stretchable Electronics, Electromagnetic Shielding, and Thermal Interfaces\",\"authors\":\"Abdollah Hajalilou,&nbsp;Elahe Parvini,&nbsp;Tiago A. Morgado,&nbsp;Pedro Alhais Lopes,&nbsp;M. Estrela Melo Jorge,&nbsp;Marta Freitas and Mahmoud Tavakoli*,&nbsp;\",\"doi\":\"10.1021/acsami.4c1715110.1021/acsami.4c17151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Liquid metal (LM)-based composites hold promise for soft electronics due to their high conductivity and fluidic nature. However, the presence of α-Ga<sub>2</sub>O<sub>3</sub> and GaOOH layers around LM droplets impairs conductivity and performance. We tackle this issue by replacing the oxide layer with conductive silver (Ag) using an ultrasonic-assisted galvanic replacement reaction. The Ag-coated nanoparticles form aggregated, porous microparticles that are mixed with styrene–isoprene–styrene (SIS) polymers, resulting in a digitally printable composite with superior electrical conductivity and electromechanical properties compared to conventional fillers. Adding more LM enhances these properties further. The composite achieves EMI shielding effectiveness (SE) exceeding 75 dB in the X-band frequency range, even at 200% strain, meeting stringent military and medical standards. It is applicable in wireless communications and Bluetooth signal blocking and as a thermal interface material (TIM). Additionally, we highlight its recyclability using a biodegradable solvent, underscoring its eco-friendly potential. This composite represents a significant advancement in stretchable electronics and EMI shielding, with implications for wearable and bioelectronic applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"16 44\",\"pages\":\"61157–61168 61157–61168\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c17151\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c17151","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于液态金属(LM)的复合材料具有高导电性和流动性,有望用于软电子器件。然而,液态金属液滴周围存在的 α-Ga2O3 和 GaOOH 层会影响导电性和性能。我们采用超声波辅助电化学置换反应,用导电银(Ag)取代氧化层,从而解决了这一问题。银涂层纳米颗粒与苯乙烯-异戊二烯-苯乙烯(SIS)聚合物混合后形成聚集的多孔微颗粒,从而产生了一种可数字打印的复合材料,与传统填料相比,这种复合材料具有更优越的导电性和机电性能。添加更多的 LM 可进一步增强这些性能。这种复合材料在 X 波段频率范围内的电磁干扰屏蔽效能(SE)超过 75 dB,即使在应变为 200% 的情况下也是如此,符合严格的军事和医疗标准。它适用于无线通信和蓝牙信号屏蔽,也可用作热界面材料(TIM)。此外,我们还强调了它使用可生物降解溶剂的可回收性,突出了其环保潜力。这种复合材料代表了可拉伸电子元件和电磁干扰屏蔽领域的一大进步,对可穿戴设备和生物电子应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Replacing the Gallium Oxide Shell with Conductive Ag: Toward a Printable and Recyclable Composite for Highly Stretchable Electronics, Electromagnetic Shielding, and Thermal Interfaces

Replacing the Gallium Oxide Shell with Conductive Ag: Toward a Printable and Recyclable Composite for Highly Stretchable Electronics, Electromagnetic Shielding, and Thermal Interfaces

Liquid metal (LM)-based composites hold promise for soft electronics due to their high conductivity and fluidic nature. However, the presence of α-Ga2O3 and GaOOH layers around LM droplets impairs conductivity and performance. We tackle this issue by replacing the oxide layer with conductive silver (Ag) using an ultrasonic-assisted galvanic replacement reaction. The Ag-coated nanoparticles form aggregated, porous microparticles that are mixed with styrene–isoprene–styrene (SIS) polymers, resulting in a digitally printable composite with superior electrical conductivity and electromechanical properties compared to conventional fillers. Adding more LM enhances these properties further. The composite achieves EMI shielding effectiveness (SE) exceeding 75 dB in the X-band frequency range, even at 200% strain, meeting stringent military and medical standards. It is applicable in wireless communications and Bluetooth signal blocking and as a thermal interface material (TIM). Additionally, we highlight its recyclability using a biodegradable solvent, underscoring its eco-friendly potential. This composite represents a significant advancement in stretchable electronics and EMI shielding, with implications for wearable and bioelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信