{"title":"整体超低纯中压分解试验可得出已知和未知成分的生物和非生物降解动力学,以增强超低纯中压分解的降解概况。","authors":"Heidi Birch , Karen Scharling Dyhr , Sylvain Antoniotti , Marina Thierry , Aurelia Lapczynski , Philipp Mayer","doi":"10.1016/j.chemosphere.2024.143675","DOIUrl":null,"url":null,"abstract":"<div><div>The green transition and move towards safe and sustainable-by-design chemicals entail the need for new methods to study the biodegradability of UVCBs (substances of Unknown or Variable composition, Complex reaction products, and Biological materials). Standard simulation biodegradation tests have been developed for single substances and are generally not applicable for UVCBs. The aims of this study were (1) to combine a whole UVCB biodegradation test with a sensitive constituent-specific analytical technique, (2) to measure biotic and abiotic degradation of known and unknown UVCB constituents, and (3) to determine the impact of a wastewater treatment plant (WWTP) discharge on the constituent specific biodegradation in stream water. Lavender oil and black pepper oil are of significance in the perfume and cosmetics industries and served as model UVCBs. Stream water sampled upstream and downstream of a WWTP discharge point was characterized and used as inoculum (i.e., naturally and wastewater-adapted bacterial consortia). Tests were conducted in gastight headspace vials, and automated Arrow Solid Phase Microextraction GC-MS-scan was applied on unopened vials. Peak area ratios between biotic test systems and abiotic controls were used to determine primary biodegradation kinetics, and freshly spiked analytical references to separate biotic from abiotic degradation. Biodegradation half-times were below 20 days for all known (8–12) and unknown constituents (>78) in the essential oils. A dual-column GC-MS analysis produced a level 2 identification of 16 unknown lavender constituents. Biodegradation kinetics were similar in inoculum taken before and after the WWTP outlet, confirming that native stream microorganisms were competent degraders.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143675"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole UVCB tests can yield biotic and abiotic degradation kinetics of known and unknown constituents for an enhanced UVCB degradation profile\",\"authors\":\"Heidi Birch , Karen Scharling Dyhr , Sylvain Antoniotti , Marina Thierry , Aurelia Lapczynski , Philipp Mayer\",\"doi\":\"10.1016/j.chemosphere.2024.143675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The green transition and move towards safe and sustainable-by-design chemicals entail the need for new methods to study the biodegradability of UVCBs (substances of Unknown or Variable composition, Complex reaction products, and Biological materials). Standard simulation biodegradation tests have been developed for single substances and are generally not applicable for UVCBs. The aims of this study were (1) to combine a whole UVCB biodegradation test with a sensitive constituent-specific analytical technique, (2) to measure biotic and abiotic degradation of known and unknown UVCB constituents, and (3) to determine the impact of a wastewater treatment plant (WWTP) discharge on the constituent specific biodegradation in stream water. Lavender oil and black pepper oil are of significance in the perfume and cosmetics industries and served as model UVCBs. Stream water sampled upstream and downstream of a WWTP discharge point was characterized and used as inoculum (i.e., naturally and wastewater-adapted bacterial consortia). Tests were conducted in gastight headspace vials, and automated Arrow Solid Phase Microextraction GC-MS-scan was applied on unopened vials. Peak area ratios between biotic test systems and abiotic controls were used to determine primary biodegradation kinetics, and freshly spiked analytical references to separate biotic from abiotic degradation. Biodegradation half-times were below 20 days for all known (8–12) and unknown constituents (>78) in the essential oils. A dual-column GC-MS analysis produced a level 2 identification of 16 unknown lavender constituents. Biodegradation kinetics were similar in inoculum taken before and after the WWTP outlet, confirming that native stream microorganisms were competent degraders.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"368 \",\"pages\":\"Article 143675\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004565352402575X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004565352402575X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Whole UVCB tests can yield biotic and abiotic degradation kinetics of known and unknown constituents for an enhanced UVCB degradation profile
The green transition and move towards safe and sustainable-by-design chemicals entail the need for new methods to study the biodegradability of UVCBs (substances of Unknown or Variable composition, Complex reaction products, and Biological materials). Standard simulation biodegradation tests have been developed for single substances and are generally not applicable for UVCBs. The aims of this study were (1) to combine a whole UVCB biodegradation test with a sensitive constituent-specific analytical technique, (2) to measure biotic and abiotic degradation of known and unknown UVCB constituents, and (3) to determine the impact of a wastewater treatment plant (WWTP) discharge on the constituent specific biodegradation in stream water. Lavender oil and black pepper oil are of significance in the perfume and cosmetics industries and served as model UVCBs. Stream water sampled upstream and downstream of a WWTP discharge point was characterized and used as inoculum (i.e., naturally and wastewater-adapted bacterial consortia). Tests were conducted in gastight headspace vials, and automated Arrow Solid Phase Microextraction GC-MS-scan was applied on unopened vials. Peak area ratios between biotic test systems and abiotic controls were used to determine primary biodegradation kinetics, and freshly spiked analytical references to separate biotic from abiotic degradation. Biodegradation half-times were below 20 days for all known (8–12) and unknown constituents (>78) in the essential oils. A dual-column GC-MS analysis produced a level 2 identification of 16 unknown lavender constituents. Biodegradation kinetics were similar in inoculum taken before and after the WWTP outlet, confirming that native stream microorganisms were competent degraders.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.