解码 RNA 序列及其相互作用在甲型流感病毒感染和适应中的作用。

IF 6.4 2区 生物学 Q1 CELL BIOLOGY
Satya P Sharma, Mamta Chawla-Sarkar, Rajat Sandhir, Dipanjan Dutta
{"title":"解码 RNA 序列及其相互作用在甲型流感病毒感染和适应中的作用。","authors":"Satya P Sharma, Mamta Chawla-Sarkar, Rajat Sandhir, Dipanjan Dutta","doi":"10.1002/wrna.1871","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza viruses (types A, B, C, and D) belong to the family orthomyxoviridae. Out of all the influenza types, influenza A virus (IAV) causes human pandemic outbreaks. Its pandemic potential is predominantly attributed to the genetic reassortment favored by a broad spectrum of host species that could lead to an antigenic shift along with a high rate of mutations in its genome, presenting a possibility of subtypes with heightened pathogenesis and virulence in humans (antigenic drift). In addition to antigenic shift and drift, there are several other inherent properties of its viral RNA species (vRNA, vmRNA, and cRNA) that significantly contribute to the success of specific stages of viral infection. In this review, we compile the key features of IAV RNA, such as sequence motifs and secondary structures, their functional significance in the infection cycle, and their overall impact on the virus's adaptive and evolutionary fitness. Because many of these motifs and folds are conserved, we also assess the existing antiviral approaches focused on targeting IAV RNA. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"15 6","pages":"e1871"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation.\",\"authors\":\"Satya P Sharma, Mamta Chawla-Sarkar, Rajat Sandhir, Dipanjan Dutta\",\"doi\":\"10.1002/wrna.1871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Influenza viruses (types A, B, C, and D) belong to the family orthomyxoviridae. Out of all the influenza types, influenza A virus (IAV) causes human pandemic outbreaks. Its pandemic potential is predominantly attributed to the genetic reassortment favored by a broad spectrum of host species that could lead to an antigenic shift along with a high rate of mutations in its genome, presenting a possibility of subtypes with heightened pathogenesis and virulence in humans (antigenic drift). In addition to antigenic shift and drift, there are several other inherent properties of its viral RNA species (vRNA, vmRNA, and cRNA) that significantly contribute to the success of specific stages of viral infection. In this review, we compile the key features of IAV RNA, such as sequence motifs and secondary structures, their functional significance in the infection cycle, and their overall impact on the virus's adaptive and evolutionary fitness. Because many of these motifs and folds are conserved, we also assess the existing antiviral approaches focused on targeting IAV RNA. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.</p>\",\"PeriodicalId\":23886,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: RNA\",\"volume\":\"15 6\",\"pages\":\"e1871\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/wrna.1871\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.1871","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

流感病毒(甲型、乙型、丙型和丁型)属于正粘病毒科。在所有流感病毒类型中,甲型流感病毒(IAV)会导致人类流感大爆发。甲型流感病毒之所以具有大流行的潜能,主要是由于其基因重组受到广泛宿主物种的青睐,这可能导致抗原转变以及基因组的高突变率,从而可能产生对人类具有更强致病性和毒力的亚型(抗原漂移)。除抗原转移和漂移外,病毒 RNA(vRNA、vmRNA 和 cRNA)还具有其他一些固有特性,这些特性对病毒感染特定阶段的成功起着重要作用。在这篇综述中,我们梳理了 IAV RNA 的关键特征,如序列基序和二级结构、它们在感染周期中的功能意义,以及它们对病毒适应性和进化适应性的总体影响。由于这些基序和褶皱中有许多是保守的,因此我们还评估了现有的以 IAV RNA 为靶标的抗病毒方法。本文归类于RNA 结构与动力学 > RNA 结构对生物系统的影响 RNA 与蛋白质和其他分子的相互作用 > 蛋白质与 RNA 的相互作用:疾病和发育中的 RNA > 疾病中的 RNA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation.

Influenza viruses (types A, B, C, and D) belong to the family orthomyxoviridae. Out of all the influenza types, influenza A virus (IAV) causes human pandemic outbreaks. Its pandemic potential is predominantly attributed to the genetic reassortment favored by a broad spectrum of host species that could lead to an antigenic shift along with a high rate of mutations in its genome, presenting a possibility of subtypes with heightened pathogenesis and virulence in humans (antigenic drift). In addition to antigenic shift and drift, there are several other inherent properties of its viral RNA species (vRNA, vmRNA, and cRNA) that significantly contribute to the success of specific stages of viral infection. In this review, we compile the key features of IAV RNA, such as sequence motifs and secondary structures, their functional significance in the infection cycle, and their overall impact on the virus's adaptive and evolutionary fitness. Because many of these motifs and folds are conserved, we also assess the existing antiviral approaches focused on targeting IAV RNA. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信