逐层组装支架联合输送生物活性分子用于骨再生的最新进展:最新综述。

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiankun Liu, Chao Zhou, Qiong Xie, Linying Xia, Lu Liu, Wenwen Bao, Hongming Lin, Xiaochun Xiong, Hao Zhang, Zeping Zheng, Jiayi Zhao, Wenqing Liang
{"title":"逐层组装支架联合输送生物活性分子用于骨再生的最新进展:最新综述。","authors":"Xiankun Liu, Chao Zhou, Qiong Xie, Linying Xia, Lu Liu, Wenwen Bao, Hongming Lin, Xiaochun Xiong, Hao Zhang, Zeping Zheng, Jiayi Zhao, Wenqing Liang","doi":"10.1186/s12967-024-05809-0","DOIUrl":null,"url":null,"abstract":"<p><p>Orthopedic implants have faced challenges in treating bone defects due to various factors, including inadequate osseointegration, oxidative stress, bacterial infection, immunological rejection, and poor individualized treatment. These challenges profoundly affect both the results of treatment and patients' daily lives. There is great promise for the layer-by-layer (LbL) assembly method in tissue engineering. The method primarily relies on electrostatic attraction and entails the consecutive deposition of electrolyte complexes with opposite charges onto a substrate, leading to the formation of homogeneous single layers that can be quickly deposited to produce nanolayer films. LbL has attracted considerable interest as a coating technology because of its ease of production, cost-effectiveness, and capability to apply diverse biomaterial coatings without compromising the primary bio-functional properties of the substrate materials. This review will look into the fundamentals and evolution of LbL in orthopedics, provide an analysis of the chemical strategy used to prepare bone implants with LbL and introduce the application of LbL bone implants in orthopedics over recent years. Among the many potential uses of LbL, such as the implementation of sustained-release and programmed drug delivery, which in turn promotes the osseointegration and the development of new blood vessels, as well as antibacterial, antioxidant, and other similar applications. In addition, we offer a thorough examination of cell behavior and biomaterial interaction to facilitate the advancement of next-generation LbL films for tissue engineering.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539823/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent advances in layer-by-layer assembly scaffolds for co-delivery of bioactive molecules for bone regeneration: an updated review.\",\"authors\":\"Xiankun Liu, Chao Zhou, Qiong Xie, Linying Xia, Lu Liu, Wenwen Bao, Hongming Lin, Xiaochun Xiong, Hao Zhang, Zeping Zheng, Jiayi Zhao, Wenqing Liang\",\"doi\":\"10.1186/s12967-024-05809-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orthopedic implants have faced challenges in treating bone defects due to various factors, including inadequate osseointegration, oxidative stress, bacterial infection, immunological rejection, and poor individualized treatment. These challenges profoundly affect both the results of treatment and patients' daily lives. There is great promise for the layer-by-layer (LbL) assembly method in tissue engineering. The method primarily relies on electrostatic attraction and entails the consecutive deposition of electrolyte complexes with opposite charges onto a substrate, leading to the formation of homogeneous single layers that can be quickly deposited to produce nanolayer films. LbL has attracted considerable interest as a coating technology because of its ease of production, cost-effectiveness, and capability to apply diverse biomaterial coatings without compromising the primary bio-functional properties of the substrate materials. This review will look into the fundamentals and evolution of LbL in orthopedics, provide an analysis of the chemical strategy used to prepare bone implants with LbL and introduce the application of LbL bone implants in orthopedics over recent years. Among the many potential uses of LbL, such as the implementation of sustained-release and programmed drug delivery, which in turn promotes the osseointegration and the development of new blood vessels, as well as antibacterial, antioxidant, and other similar applications. In addition, we offer a thorough examination of cell behavior and biomaterial interaction to facilitate the advancement of next-generation LbL films for tissue engineering.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539823/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12967-024-05809-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-024-05809-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

骨科植入物在治疗骨缺损方面面临着各种挑战,其中包括骨结合不充分、氧化应激、细菌感染、免疫排斥以及个体化治疗不当等因素。这些挑战严重影响了治疗效果和患者的日常生活。逐层(LbL)组装法在组织工程中大有可为。这种方法主要依靠静电吸引,需要将带相反电荷的电解质复合物连续沉积到基底上,从而形成均匀的单层,并可快速沉积以产生纳米层薄膜。由于 LbL 易于生产、成本效益高,而且能够在不影响基底材料主要生物功能特性的情况下应用各种生物材料涂层,因此作为一种涂层技术引起了人们的极大兴趣。本综述将探讨 LbL 在骨科中的基本原理和演变,分析用 LbL 制备骨植入物的化学策略,并介绍近年来 LbL 骨植入物在骨科中的应用。在 LbL 的众多潜在用途中,例如实施持续释放和程序化给药,进而促进骨结合和新血管的发育,以及抗菌、抗氧化和其他类似应用。此外,我们还对细胞行为和生物材料相互作用进行了深入研究,以促进用于组织工程的下一代 LbL 薄膜的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in layer-by-layer assembly scaffolds for co-delivery of bioactive molecules for bone regeneration: an updated review.

Orthopedic implants have faced challenges in treating bone defects due to various factors, including inadequate osseointegration, oxidative stress, bacterial infection, immunological rejection, and poor individualized treatment. These challenges profoundly affect both the results of treatment and patients' daily lives. There is great promise for the layer-by-layer (LbL) assembly method in tissue engineering. The method primarily relies on electrostatic attraction and entails the consecutive deposition of electrolyte complexes with opposite charges onto a substrate, leading to the formation of homogeneous single layers that can be quickly deposited to produce nanolayer films. LbL has attracted considerable interest as a coating technology because of its ease of production, cost-effectiveness, and capability to apply diverse biomaterial coatings without compromising the primary bio-functional properties of the substrate materials. This review will look into the fundamentals and evolution of LbL in orthopedics, provide an analysis of the chemical strategy used to prepare bone implants with LbL and introduce the application of LbL bone implants in orthopedics over recent years. Among the many potential uses of LbL, such as the implementation of sustained-release and programmed drug delivery, which in turn promotes the osseointegration and the development of new blood vessels, as well as antibacterial, antioxidant, and other similar applications. In addition, we offer a thorough examination of cell behavior and biomaterial interaction to facilitate the advancement of next-generation LbL films for tissue engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信