Marwa Abdeltawab Mohammed, Nesma Hussein Abel Hay, Maha Tarek Mohammed, Hoda Sayed Mahmoud, Manar Yehia Ahmed, Ahmed Abdelmenem, Dina Sayed Abdelrahim
{"title":"脂肪间充质干细胞对高果糖饮食引起的肝功能紊乱和菌群失调的影响","authors":"Marwa Abdeltawab Mohammed, Nesma Hussein Abel Hay, Maha Tarek Mohammed, Hoda Sayed Mahmoud, Manar Yehia Ahmed, Ahmed Abdelmenem, Dina Sayed Abdelrahim","doi":"10.1007/s00210-024-03518-5","DOIUrl":null,"url":null,"abstract":"<p><p>High fructose diet (HFrD) has been approved to be involved in the pathogenesis of insulin resistance. Mesenchymal stem cells have a vital role in the treatment of various diseases including metabolic disturbances. We investigated the effect of Adipose-derived mesenchymal stem cells (ADMSCs) against HFrD-induced metabolic disorders and the molecular mechanisms for this effect. Rats were divided into 3 groups; control, HFrD, and combined HFrD with ADMSCs. We assessed liver functions, gut microbiota activity, oxidative stress, adiponectin, and IL10 levels. Also, we measured SREBP-1, IRS-1 expression using Western blot, and Malat1 expression using rt-PCR. ADMSCs antagonized metabolic abnormalities induced by HFrD in the form of improvement of liver functions and alleviation of oxidative stress. In addition, ADMSCs ameliorated gut microbiota activity besides the elevation of adiponectin and IL10 levels. ADMSCs attenuated insulin resistance through upregulation of IRS1 and downregulation of SREBP-1 and Malat1. ADMSCs can protect against HFrD-induced metabolic hazards.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"4525-4537"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of adipose-derived mesenchymal stem cells against high fructose diet induced liver dysfunction and dysbiosis.\",\"authors\":\"Marwa Abdeltawab Mohammed, Nesma Hussein Abel Hay, Maha Tarek Mohammed, Hoda Sayed Mahmoud, Manar Yehia Ahmed, Ahmed Abdelmenem, Dina Sayed Abdelrahim\",\"doi\":\"10.1007/s00210-024-03518-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High fructose diet (HFrD) has been approved to be involved in the pathogenesis of insulin resistance. Mesenchymal stem cells have a vital role in the treatment of various diseases including metabolic disturbances. We investigated the effect of Adipose-derived mesenchymal stem cells (ADMSCs) against HFrD-induced metabolic disorders and the molecular mechanisms for this effect. Rats were divided into 3 groups; control, HFrD, and combined HFrD with ADMSCs. We assessed liver functions, gut microbiota activity, oxidative stress, adiponectin, and IL10 levels. Also, we measured SREBP-1, IRS-1 expression using Western blot, and Malat1 expression using rt-PCR. ADMSCs antagonized metabolic abnormalities induced by HFrD in the form of improvement of liver functions and alleviation of oxidative stress. In addition, ADMSCs ameliorated gut microbiota activity besides the elevation of adiponectin and IL10 levels. ADMSCs attenuated insulin resistance through upregulation of IRS1 and downregulation of SREBP-1 and Malat1. ADMSCs can protect against HFrD-induced metabolic hazards.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"4525-4537\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03518-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03518-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The effect of adipose-derived mesenchymal stem cells against high fructose diet induced liver dysfunction and dysbiosis.
High fructose diet (HFrD) has been approved to be involved in the pathogenesis of insulin resistance. Mesenchymal stem cells have a vital role in the treatment of various diseases including metabolic disturbances. We investigated the effect of Adipose-derived mesenchymal stem cells (ADMSCs) against HFrD-induced metabolic disorders and the molecular mechanisms for this effect. Rats were divided into 3 groups; control, HFrD, and combined HFrD with ADMSCs. We assessed liver functions, gut microbiota activity, oxidative stress, adiponectin, and IL10 levels. Also, we measured SREBP-1, IRS-1 expression using Western blot, and Malat1 expression using rt-PCR. ADMSCs antagonized metabolic abnormalities induced by HFrD in the form of improvement of liver functions and alleviation of oxidative stress. In addition, ADMSCs ameliorated gut microbiota activity besides the elevation of adiponectin and IL10 levels. ADMSCs attenuated insulin resistance through upregulation of IRS1 and downregulation of SREBP-1 and Malat1. ADMSCs can protect against HFrD-induced metabolic hazards.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.