{"title":"华南地区自然越冬红豆杉的耐寒性和生理反应","authors":"Zhong Qin, Zeheng Xiao, Chuang Li, Jimin Liu, Fucheng Yao, Xiaoting Lin, Jiaen Zhang, Yiman Liu","doi":"10.1002/jez.2874","DOIUrl":null,"url":null,"abstract":"<p><p>Pomacea canaliculata (Lamarck 1822), a freshwater gastropod indigenous to lower Del Plata Basin of Argentina, has become the most destructive and invasive rice pests in south China since its introduction in the 1980s. In Guangdong, the main production areas for double rice, most of P. canaliculata overwinter in paddy field ditches after late-rice harvesting in mid-November and diapause to temporarily to avoid the damaging effects of extreme low temperatures. This pest aroused from diapause and migrated to the paddy field after early-rice reviving in next late March. Overwintering and cold tolerance of natural P. canaliculata have a non-negligible impact on population dynamics and distribution in the following year. We tested the supercooling capability, levels of cryoprotectant synthesis, activity of antioxidant defense system (antioxidant enzymes and reduced glutathione), and degree of oxidative damage (concentration of malondialdehyde as an index of lipid peroxidation) monthly, using natural P. canaliculata samples with a size-gender structure (i.e., juveniles, female, and male adults) from experimental ponds during the period of mid-November to the following April. P. canaliculata survived the winter with a monthly death rate of 7%-16.5% in coldest January. The supercooling point (SCP) of overwintering P. canaliculata decreased initially before increasing subsequently with monthly changes in water temperature. P. canaliculata accumulated a high glycogen content before December, which depleted towards the end of January, while lipid content reached peak in January and depleted since February. Activity of antioxidant defense system of P. canaliculata exhibited significant monthly differences and showed relatively higher size heterogeneity than monthly variations. The results contribute to the knowledge of adaptability in overwintering P. canaliculata and help to understand the mechanism of the invasive success of this species.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cold Tolerance and Physiological Response of Natural Overwintering Pomacea canaliculata in South China.\",\"authors\":\"Zhong Qin, Zeheng Xiao, Chuang Li, Jimin Liu, Fucheng Yao, Xiaoting Lin, Jiaen Zhang, Yiman Liu\",\"doi\":\"10.1002/jez.2874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pomacea canaliculata (Lamarck 1822), a freshwater gastropod indigenous to lower Del Plata Basin of Argentina, has become the most destructive and invasive rice pests in south China since its introduction in the 1980s. In Guangdong, the main production areas for double rice, most of P. canaliculata overwinter in paddy field ditches after late-rice harvesting in mid-November and diapause to temporarily to avoid the damaging effects of extreme low temperatures. This pest aroused from diapause and migrated to the paddy field after early-rice reviving in next late March. Overwintering and cold tolerance of natural P. canaliculata have a non-negligible impact on population dynamics and distribution in the following year. We tested the supercooling capability, levels of cryoprotectant synthesis, activity of antioxidant defense system (antioxidant enzymes and reduced glutathione), and degree of oxidative damage (concentration of malondialdehyde as an index of lipid peroxidation) monthly, using natural P. canaliculata samples with a size-gender structure (i.e., juveniles, female, and male adults) from experimental ponds during the period of mid-November to the following April. P. canaliculata survived the winter with a monthly death rate of 7%-16.5% in coldest January. The supercooling point (SCP) of overwintering P. canaliculata decreased initially before increasing subsequently with monthly changes in water temperature. P. canaliculata accumulated a high glycogen content before December, which depleted towards the end of January, while lipid content reached peak in January and depleted since February. Activity of antioxidant defense system of P. canaliculata exhibited significant monthly differences and showed relatively higher size heterogeneity than monthly variations. The results contribute to the knowledge of adaptability in overwintering P. canaliculata and help to understand the mechanism of the invasive success of this species.</p>\",\"PeriodicalId\":15711,\"journal\":{\"name\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jez.2874\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jez.2874","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Cold Tolerance and Physiological Response of Natural Overwintering Pomacea canaliculata in South China.
Pomacea canaliculata (Lamarck 1822), a freshwater gastropod indigenous to lower Del Plata Basin of Argentina, has become the most destructive and invasive rice pests in south China since its introduction in the 1980s. In Guangdong, the main production areas for double rice, most of P. canaliculata overwinter in paddy field ditches after late-rice harvesting in mid-November and diapause to temporarily to avoid the damaging effects of extreme low temperatures. This pest aroused from diapause and migrated to the paddy field after early-rice reviving in next late March. Overwintering and cold tolerance of natural P. canaliculata have a non-negligible impact on population dynamics and distribution in the following year. We tested the supercooling capability, levels of cryoprotectant synthesis, activity of antioxidant defense system (antioxidant enzymes and reduced glutathione), and degree of oxidative damage (concentration of malondialdehyde as an index of lipid peroxidation) monthly, using natural P. canaliculata samples with a size-gender structure (i.e., juveniles, female, and male adults) from experimental ponds during the period of mid-November to the following April. P. canaliculata survived the winter with a monthly death rate of 7%-16.5% in coldest January. The supercooling point (SCP) of overwintering P. canaliculata decreased initially before increasing subsequently with monthly changes in water temperature. P. canaliculata accumulated a high glycogen content before December, which depleted towards the end of January, while lipid content reached peak in January and depleted since February. Activity of antioxidant defense system of P. canaliculata exhibited significant monthly differences and showed relatively higher size heterogeneity than monthly variations. The results contribute to the knowledge of adaptability in overwintering P. canaliculata and help to understand the mechanism of the invasive success of this species.
期刊介绍:
The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.