Zirang Chen, Yangyu Lu, Zhezhen Xu, Lijing Wu, Xi Wei, Yanling Cai
{"title":"将植物中的伯克霍尔德氏菌(Burkholderia ambifaria)菌株作为一种新型益生菌用于龋齿防治的评估。","authors":"Zirang Chen, Yangyu Lu, Zhezhen Xu, Lijing Wu, Xi Wei, Yanling Cai","doi":"10.1080/20002297.2024.2420612","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Probiotics serve as a novel preventive or therapeutic approach for dental caries owing to their ability to reverse dysbiosis and restore a healthy microbiota. Here, we identified <i>Burkholderia ambifaria</i> AFS098024 as a probiotic candidate isolated from plants.</p><p><strong>Methods: </strong>The safety of <i>B. ambifaria</i> was evaluated by hemolytic activity, D-lactic acid production and antibiotic susceptibility. <i>In vitro</i> biofilm model derived from the saliva of caries-free and caries-active donors and <i>in vivo</i> rat caries model were used to assess the efficacy of <i>B. ambifaria</i> in caries prevention and treatment.</p><p><strong>Results: </strong><i>B. ambifaria</i> was safe as a probiotic candidate and it could integrate with <i>in vitro</i> biofilm model. It significantly reduced the biomass and lactate production of biofilms from caries-active donors and disrupted biofilm structures. <i>B. ambifaria</i> effectively reduced the severity of carious lesions in rat molars, regardless of the inoculation sequence. Molars pretreated or treated with <i>B. ambifaria</i> demonstrated notably higher enamel volumes. Additionally, colonization of rat molars by <i>B. ambifaria</i> persisted for 6 weeks.</p><p><strong>Conclusion: </strong>The <i>B. ambifaria</i> strain used in this study holds promise as a probiotic for inhibiting dental caries, both <i>in vitro</i> and <i>in vivo</i>.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"16 1","pages":"2420612"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a <i>Burkholderia ambifaria</i> strain from plants as a novel promising probiotic in dental caries management.\",\"authors\":\"Zirang Chen, Yangyu Lu, Zhezhen Xu, Lijing Wu, Xi Wei, Yanling Cai\",\"doi\":\"10.1080/20002297.2024.2420612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Probiotics serve as a novel preventive or therapeutic approach for dental caries owing to their ability to reverse dysbiosis and restore a healthy microbiota. Here, we identified <i>Burkholderia ambifaria</i> AFS098024 as a probiotic candidate isolated from plants.</p><p><strong>Methods: </strong>The safety of <i>B. ambifaria</i> was evaluated by hemolytic activity, D-lactic acid production and antibiotic susceptibility. <i>In vitro</i> biofilm model derived from the saliva of caries-free and caries-active donors and <i>in vivo</i> rat caries model were used to assess the efficacy of <i>B. ambifaria</i> in caries prevention and treatment.</p><p><strong>Results: </strong><i>B. ambifaria</i> was safe as a probiotic candidate and it could integrate with <i>in vitro</i> biofilm model. It significantly reduced the biomass and lactate production of biofilms from caries-active donors and disrupted biofilm structures. <i>B. ambifaria</i> effectively reduced the severity of carious lesions in rat molars, regardless of the inoculation sequence. Molars pretreated or treated with <i>B. ambifaria</i> demonstrated notably higher enamel volumes. Additionally, colonization of rat molars by <i>B. ambifaria</i> persisted for 6 weeks.</p><p><strong>Conclusion: </strong>The <i>B. ambifaria</i> strain used in this study holds promise as a probiotic for inhibiting dental caries, both <i>in vitro</i> and <i>in vivo</i>.</p>\",\"PeriodicalId\":16598,\"journal\":{\"name\":\"Journal of Oral Microbiology\",\"volume\":\"16 1\",\"pages\":\"2420612\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/20002297.2024.2420612\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/20002297.2024.2420612","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Evaluation of a Burkholderia ambifaria strain from plants as a novel promising probiotic in dental caries management.
Background: Probiotics serve as a novel preventive or therapeutic approach for dental caries owing to their ability to reverse dysbiosis and restore a healthy microbiota. Here, we identified Burkholderia ambifaria AFS098024 as a probiotic candidate isolated from plants.
Methods: The safety of B. ambifaria was evaluated by hemolytic activity, D-lactic acid production and antibiotic susceptibility. In vitro biofilm model derived from the saliva of caries-free and caries-active donors and in vivo rat caries model were used to assess the efficacy of B. ambifaria in caries prevention and treatment.
Results: B. ambifaria was safe as a probiotic candidate and it could integrate with in vitro biofilm model. It significantly reduced the biomass and lactate production of biofilms from caries-active donors and disrupted biofilm structures. B. ambifaria effectively reduced the severity of carious lesions in rat molars, regardless of the inoculation sequence. Molars pretreated or treated with B. ambifaria demonstrated notably higher enamel volumes. Additionally, colonization of rat molars by B. ambifaria persisted for 6 weeks.
Conclusion: The B. ambifaria strain used in this study holds promise as a probiotic for inhibiting dental caries, both in vitro and in vivo.
期刊介绍:
As the first Open Access journal in its field, the Journal of Oral Microbiology aims to be an influential source of knowledge on the aetiological agents behind oral infectious diseases. The journal is an international forum for original research on all aspects of ''oral health''. Articles which seek to understand ''oral health'' through exploration of the pathogenesis, virulence, host-parasite interactions, and immunology of oral infections are of particular interest. However, the journal also welcomes work that addresses the global agenda of oral infectious diseases and articles that present new strategies for treatment and prevention or improvements to existing strategies.
Topics: ''oral health'', microbiome, genomics, host-pathogen interactions, oral infections, aetiologic agents, pathogenesis, molecular microbiology systemic diseases, ecology/environmental microbiology, treatment, diagnostics, epidemiology, basic oral microbiology, and taxonomy/systematics.
Article types: original articles, notes, review articles, mini-reviews and commentaries