Michał Kolasa, Rama Sarvani Krovi, Radosław Plewa, Tomasz Jaworski, Marcin Kadej, Adrian Smolis, Jerzy M Gutowski, Krzysztof Sućko, Rafał Ruta, Tomasz Olbrycht, Sergey Saluk, Maria Oczkowicz, Łukasz Kajtoch
{"title":"寄主树部分解释了两种濒危甲虫复杂的细菌群落。","authors":"Michał Kolasa, Rama Sarvani Krovi, Radosław Plewa, Tomasz Jaworski, Marcin Kadej, Adrian Smolis, Jerzy M Gutowski, Krzysztof Sućko, Rafał Ruta, Tomasz Olbrycht, Sergey Saluk, Maria Oczkowicz, Łukasz Kajtoch","doi":"10.1111/imb.12973","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms are integral to ecosystem functioning and host adaptation, yet the understanding of microbiomes in diverse beetle taxa remains limited. We conducted a comprehensive study to investigate the microbial composition of two red flat bark beetle species, Cucujus haematodes and C. cinnaberinus, and assessed the influence of host taxonomic relatedness and host tree species on their microbiomes. We sampled 67 larvae of two Cucujus taxa taken from 11 host tree species. 16S rRNA V4 fragment sequencing revealed distinct microbial communities associated with each Cucujus species, with host tree species significantly influencing microbiome composition. Alpha and beta diversity metrics indicated significant differences between microbial communities in both beetle and host tree species. Principal component analysis indicated distinct clustering based on host tree species but not for beetle species. This overlap could be attributed to the similar ecology of both Cucujus species. The detection of various bacteria, among which some have already been reported in saproxylophagous beetles, suggests that the red flat bark beetles ingest the bacteria via foraging on other wood-dwelling invertebrates. Our findings show the complex interplay between host taxonomy, microhabitat and microbial composition in Cucujus, providing insights into their ecological roles and conservation implications. This research helps to fill the gap in understanding the microbial dynamics of saproxylic beetles, sheds light on factors shaping their microbiomes and highlights the importance of considering both host species and environmental conditions when studying insect-microbe interactions in forest ecosystems.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host trees partially explain the complex bacterial communities of two threatened saproxylic beetles.\",\"authors\":\"Michał Kolasa, Rama Sarvani Krovi, Radosław Plewa, Tomasz Jaworski, Marcin Kadej, Adrian Smolis, Jerzy M Gutowski, Krzysztof Sućko, Rafał Ruta, Tomasz Olbrycht, Sergey Saluk, Maria Oczkowicz, Łukasz Kajtoch\",\"doi\":\"10.1111/imb.12973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microorganisms are integral to ecosystem functioning and host adaptation, yet the understanding of microbiomes in diverse beetle taxa remains limited. We conducted a comprehensive study to investigate the microbial composition of two red flat bark beetle species, Cucujus haematodes and C. cinnaberinus, and assessed the influence of host taxonomic relatedness and host tree species on their microbiomes. We sampled 67 larvae of two Cucujus taxa taken from 11 host tree species. 16S rRNA V4 fragment sequencing revealed distinct microbial communities associated with each Cucujus species, with host tree species significantly influencing microbiome composition. Alpha and beta diversity metrics indicated significant differences between microbial communities in both beetle and host tree species. Principal component analysis indicated distinct clustering based on host tree species but not for beetle species. This overlap could be attributed to the similar ecology of both Cucujus species. The detection of various bacteria, among which some have already been reported in saproxylophagous beetles, suggests that the red flat bark beetles ingest the bacteria via foraging on other wood-dwelling invertebrates. Our findings show the complex interplay between host taxonomy, microhabitat and microbial composition in Cucujus, providing insights into their ecological roles and conservation implications. This research helps to fill the gap in understanding the microbial dynamics of saproxylic beetles, sheds light on factors shaping their microbiomes and highlights the importance of considering both host species and environmental conditions when studying insect-microbe interactions in forest ecosystems.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/imb.12973\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12973","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Host trees partially explain the complex bacterial communities of two threatened saproxylic beetles.
Microorganisms are integral to ecosystem functioning and host adaptation, yet the understanding of microbiomes in diverse beetle taxa remains limited. We conducted a comprehensive study to investigate the microbial composition of two red flat bark beetle species, Cucujus haematodes and C. cinnaberinus, and assessed the influence of host taxonomic relatedness and host tree species on their microbiomes. We sampled 67 larvae of two Cucujus taxa taken from 11 host tree species. 16S rRNA V4 fragment sequencing revealed distinct microbial communities associated with each Cucujus species, with host tree species significantly influencing microbiome composition. Alpha and beta diversity metrics indicated significant differences between microbial communities in both beetle and host tree species. Principal component analysis indicated distinct clustering based on host tree species but not for beetle species. This overlap could be attributed to the similar ecology of both Cucujus species. The detection of various bacteria, among which some have already been reported in saproxylophagous beetles, suggests that the red flat bark beetles ingest the bacteria via foraging on other wood-dwelling invertebrates. Our findings show the complex interplay between host taxonomy, microhabitat and microbial composition in Cucujus, providing insights into their ecological roles and conservation implications. This research helps to fill the gap in understanding the microbial dynamics of saproxylic beetles, sheds light on factors shaping their microbiomes and highlights the importance of considering both host species and environmental conditions when studying insect-microbe interactions in forest ecosystems.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).